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Abstract:1

Intelligent driving assistance can alert drivers to objects in their environment; how-2

ever, such systems require a model of drivers’ situational awareness (SA) (what3

aspects of the scene they are already aware of) to avoid unnecessary alerts. More-4

over, collecting the data to train such an SA model is challenging: being an inter-5

nal human cognitive state, driver SA is difficult to measure, and non-verbal signals6

such as eye gaze are some of the only outward manifestations of it. Traditional7

methods to obtain SA labels rely on probes that result in sparse, intermittent SA8

labels unsuitable for modeling a dense, temporally correlated process via machine9

learning. We propose a novel interactive labeling protocol that captures dense,10

continuous SA labels and use it to collect an object-level SA dataset in a VR driv-11

ing simulator. Our dataset comprises 20 unique drivers’ SA labels, driving data,12

and gaze (over 320 minutes of driving) which will be made public. Additionally,13

we train an SA model from this data, formulating the object-level driver SA pre-14

diction problem as a semantic segmentation problem. Our formulation allows all15

objects in a scene at a timestep to be processed simultaneously, leveraging global16

scene context and local gaze-object relationships together. Our experiments show17

that this formulation leads to improved performance over common sense baselines18

and prior art on the SA prediction task.19

Keywords: driver awareness, driving assistance, situational awareness20

1 Introduction21

Future Advanced Driving Assistance Systems (ADAS) might include driver assistance systems that22

warn users about objects in their environment that they should pay attention to. Imagine a system23

that runs on your intelligent vehicle while you drive, tracking important traffic objects like vehicles24

and pedestrians [1]. Such a system could conceivably warn you about objects that are likely to be25

in your path or are otherwise dangerous, improving safety for everyone on the road. However, you26

are not very likely to adopt such a system if it alerts you about every object on the road regardless of27

your awareness of it — a well documented phenomenon known as “alert fatigue” [2]. To address28

this gap, we tackle the real-time object-level modeling of drivers’ Situational Awareness (SA) [3],29

specifically the set of traffic objects (vehicles, pedestrians, and two-wheelers) in the world that the30

driver is aware of at any given time.31

Drivers’ eye gaze is closely linked to their situational awareness [4, 5, 6]. However, inferring situa-32

tional awareness from eye gaze is not as simple as just counting gazed-at objects, since we regularly33

use our peripheral vision and memory to build and maintain situational awareness while driving [4].34

Additionally, drivers can ostensibly “gaze” at objects without gaining situational awareness, due to35

effects like inattentional blindness or saccading over objects without fixating on them [7].36
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Figure 1: We collect drivers’ object-level situational awareness (SA) data via a novel interactive
protocol in a VR driving simulator. We use the generated data to train a driver SA predictor from
visual scene context and driver eye gaze. Casting this as a semantic segmentation problem allows
our model to use global scene context and local gaze-object relationships together, processing the
whole scene at once regardless of the number of objects present.

Thus, we aim to learn a supervised model for predicting a driver’s situational awareness from their37

eye gaze and the scene context. However, training such a model requires a driving dataset with38

explicitly labeled drivers’ object-level situation awareness. This dataset should be a collection of39

sequences of driving events comprising the scene context, the driver eye gaze history over the scene,40

and labels of the drivers’ situational awareness over each traffic object.41

To be useful for machine learning and the downstream assistance tasks, there are a few key desiderata42

for these awareness labels: 1. Labels should explicitly denote the start of the drivers’ awareness over43

each object and hence be continuous. This is important since the transition of driver awareness is44

crucial for determining when it is appropriate to alert the driver to the object. 2. Labels should be45

dense over the set of traffic objects, i.e. we want a label for every traffic object that enters the driver’s46

field of view. 3. Labels should be collected in a way that does not affect the normal gaze behavior47

of the driver to avoid distribution shift between training and deployment gaze behavior.48

Obtaining object-level awareness labels with all the aforementioned properties simultaneously is49

challenging for a few reasons. Most current SA labeling efforts collect data either intermittently50

or sparsely [8, 9, 10, 11, 12]. For instance, the common Situation Awareness Global Assessment51

Technique (SAGAT) [13, 6] involves freezing and blanking the screen during occasional pauses in52

simulated driving, followed by probing the driver about traffic objects present in the scene. These53

collected labels are intermittent — they are valid for the moment when the simulation was paused,54

but do not tell us when a driver first becomes aware of an object. Furthermore, these labels are55

sparse, as the driver is only probed about objects within certain parts of the scene.56

In this work, we introduce a novel SA labeling protocol (Sec. 3) that produces continuous and dense57

object-level SA labels. As a part of our protocol, drivers indicate their awareness of all objects in58

their field-of-view, by pressing directional buttons on the steering wheel controller (Fig. 1). We59

collect a dataset of 80 episodes using our protocol. In each episode, drivers are instructed to drive to60

an in-world goal inside a VR driving simulator [14] while following the SA labeling protocol. We61

record their driving actions, eye gaze, and SA labeling button presses along with the simulator state.62

Further, we use the aforementioned dataset to learn a model that predicts a drivers’ object-level SA63

status given the scene context and a history of the driver’s eye gaze (Sec. 4). We cast this problem64
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as a semantic segmentation problem and show that it performs better than a common-sense gaze-65

intersection baseline and prior work that uses handcrafted features [6]. Our formulation allows us to66

process a variable number of objects in the scene in a single inference step as opposed to prior work67

which processes each object in a scene separately, repeating global computations.68

In summary, our contributions (Fig. 1) are the following:69

- SA Labeling Protocol: an interactive protocol for obtaining continuous and dense SA labels70

for on-road agents in a driving scene, without disrupting the driving task71

- SA Data Collection: a driving dataset with continuous object-level SA labels, traffic object72

states, and driver eye gaze collected using our protocol in a VR driving simulator with 2073

drivers74

- SA Prediction Model: a learned gaze-based driver situational awareness model which predicts75

SA over the scene on an object-level basis76

Our code and dataset will be released publicly upon acceptance.77

2 Related Work78

Measuring Situational Awareness: Determining a driver’s internal awareness of the environment79

and traffic objects (vehicles, two-wheelers and pedestrians) is challenging due to our use of periph-80

eral vision and behaviors like intentional blindness or saccading [15]. Prior approaches for extracting81

information about a driver’s internal awareness involve collecting data intermittently or sparsely. An82

example of this is the Situation Awareness Global Assessment Technique (SAGAT), used by prior83

work to collect dense object-level SA labels from drivers [6]. This involved periodically pausing84

the simulated driving scenario, blanking the screen, and then asking the driver a series of ques-85

tions about their awareness of individual objects in the scene. Another approach, called Daze [16],86

mitigates some SAGAT issues by posing real-time queries about recent events without pausing the87

simulation. However, it does not yield dense object-level labels and requires looking away from88

the driving scene to answer affecting natural eye-gaze behavior. An influential indirect technique89

is the Situation Present Assessment Method (SPAM) [9], which uses real-time verbal probes about90

past, present, and future situations to indirectly measure SA based on response accuracy and latency.91

SPAM importantly also uses response times as an index of how readily this information is available.92

For our requirements, verbal queries have the same label sparsity issue as Daze as well as requiring93

manual post-processing to get machine readable annotations from verbal responses.94

Driver Situational Awareness Models: Using eye gaze to infer driver attention and awareness are95

not new ideas, with preliminary studies having been around since at least the 1906s [17]. However,96

using these signals together with outward scene context for driver assistance is a relatively new97

area enabled by advances in sensor quality, form factors, and onboard computation —with the first98

papers appearing in the late-2000s [18]. Initial work used signals such as gaze direction in discrete99

traffic-facing zones as a crude proxy for driver attention to determine if traffic objects were causing100

distracted gaze. More recently, the paradigm has been to match driver gaze to objects in the traffic101

scene to determine whether the driver has noticed them and raise an alert when necessary [15].102

We will focus our discussion on the process of matching gaze to traffic objects to determine which103

ones the driver is aware of. A naive solution is to simply count objects whose bounding boxes104

contain driver gaze points [19]. However objects can be perceived without being directly gazed at105

and 3D gaze direction estimation can have errors [20]. More recently, hand-designed feature based106

learning methods have emerged [13] that predict the driver’s attention given a history of their gaze107

relative to traffic objects. Some such methods even account for concepts of working memory from108

psychology [6]. However, evaluating these methods against one another is challenging. Some of109

these methods were evaluated qualitatively without any objective ground truth being present (SA110

ground truth is hard to collect as discussed in the previous section) [21]. Other methods have only111

been evaluated offline and on data collected using SAGAT, meaning they are evaluated on singular112

snapshots rather than a stream of driving data [13, 6] which prevents important aspects like aware-113

ness transition points to be represented in the data. Their data and models are also not publicly114
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Figure 2: Example sequence of right hand turn with object-level driver responses. The top row
shows the scene from the driver view and the bottom row shows the same scene via a birds-eye
view. Labels are shown as colored arrows above the respective traffic object. Labels correspond to
buttons on the steering wheel (right). Blue corresponds to vehicle labels and red to pedestrian labels.

available, making comparative evaluation difficult. To help mitigate this issue for future research,115

we will release our continuously-labeled SA dataset publicly.116

3 Situational Awareness Data Collection117

We collected our driver object-level SA dataset in a VR driving simulator (DReyeVR [14]). Drivers118

were asked to drive safely following a series of directional goal signs (see RGB image in Fig. 1)119

along scripted routes. The drives were instructed to simultaneously follow the SA labeling protocol120

to record object-level SA labels.121

Situational Awareness Labeling Protocol: Under our proposed SA labeling protocol, drivers are122

instructed to push a button on their steering wheel as soon as they perceive a vehicle, pedestrian,123

or two-wheeler (collectively, traffic objects). For each new traffic object they perceive, they are124

instructed to press one of four buttons to indicate their awareness (see Fig. 2). The button to be125

pressed is determined by the relative position of the target object to the ego-vehicle. For instance, if126

there is an object in front of the vehicle, the forward button should be pressed. The steering wheel127

used has two sets of four buttons; the set of buttons on the left is used for vehicles and the right one128

is used for 2-wheelers+pedestrians. An example sequence of traffic objects and their corresponding129

button presses is shown in Fig. 2.130

The awareness labels are generated by associating button clicks with target objects. The direction131

is used to associate button presses with target objects. An object in a scene is considered ‘unaware’132

until it is associated with a button press, after which it’s status is flipped to ‘aware’. More details133

about how the awareness labels are generated can be found in the supplementary material.134

Route & traffic design: Each route consists of a predefined source, destination, and path. Each135

route also contains in-world navigational goal signs to direct the drivers along the path. Routes were136

designed to have an average drive time of about 4 minutes. Each route was driven by a maximum of137

8 drivers and a minimum of 4 drivers and there were a total of 15 unique routes. Participants were138

pre-assigned routes so each route would be seen equally but some chose to terminate early due to139

VR-induced nausea, causing an imbalance in the final number of routes.140

At least one safety critical scenario such as a jaywalking pedestrian was included in each route. We141

did so to ensure that driver gaze before and during safety critical scenarios was also represented in the142

dataset. More details on the scenarios can be found in the supplementary material. The traffic along143

each route was randomly generated. However, multiple objects appearing in the scene from any144

single direction could lead to ambiguities in associating objects with button clicks. Hence, we limit145

the number of new objects of each type appearing simultaneously at intersections in each direction146

to one. Note that having different sets of buttons for vehicles and pedestrians(+two wheelers) allows147

us to disambiguate between object types appearing in the same direction.148
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Figure 3: Object-wise SA prediction algorithm. A history of raw driver gaze is filtered to exclude
saccades and then transformed to 2D pixels in the current camera position. These are used to create
a gaze history map which is input together with an object segmentation of the scene (or optionally,
RGB). The Feature Pyramid Network (FPN) then produces a 3 class segmentation (unaware, aware,
background). During training, loss is ignored for objects which entered into the driver awareness
prior to the gaze history window.

Data collection details: We ran our SA protocol with 20 participants, each with 1+ year of holding149

a valid US or international driver’s license. Each participant was given a set of scripted instructions150

and were first given time to interact and familiarize themselves with the interface and the simulator.151

Once they were comfortable with driving in the simulator, they were introduced to the secondary152

labeling task and asked to perform it while completing a trial route. Participants saw a maximum153

5 non-trial routes each, but some participants did not complete all 5 routes due to the onset of154

discomfort from VR cybersickness. We collected a total of 80 routes worth of data which resulted155

in about 340 minutes of recorded driving time. The data collection was approved by the university’s156

IRB. Some additional details about the data collection are provided in the supplementary material.157

4 Modeling Driver SA158

In modeling driver situational awareness, our goal is to predict a driver’s awareness status over all159

dynamic traffic objects in the scene at a given time using scene information in conjuction with the160

driver’s gaze. Specifically, for any given traffic object obj, we would like to produce a prediction of161

the binary awareness status Aobj where Aobj ∈ {aware, unaware}.162

Problem formulation: We cast the problem of driver SA modeling as a segmentation problem,163

where the input is a visual representation of the scene in front of the user and the user’s gaze, and164

the output is a prediction of the objects in the scene that the driver is aware of.165

The scene is represented by a binary object mask indicating the location of objects in the scene (see166

“Visual scene representation” below for details); the user’s eye-gaze history is input as an additional167

channel in the same spatial coordinates (see “Gaze history map” in Figure 3). Under our formulation,168

each timestep t represents a data point where the observations are an object mask of the scene and a169

gaze map: Ot = (Iobjt ∈ R600×800, Igazet ∈ R600×800). The output of our model is a segmentation170

map with 3 classes: aware, unaware, & background. Object-level awareness labels are then derived171

from the output segmentation by taking the mode class of the pixels corresponding to each object172

while ignoring the background class, giving us Aobj for each object that is visible in Ot.173

Alternative formulations could see this posed as a classification problem, where each object is a data174

point and the neural network is trained to predict a single object-level awareness label instead. In175

contrast, our formulation requires one forward pass per timestep, rather than once per target object176

in a timestep. This avoids repeated computations since the objects share their global context.177
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Gaze representation: The gaze history map Igazet is obtained from a sequence of 3D gaze over a178

historical window of length W seconds. If we sample gaze at a rate of s Hz over this window, we179

obtain Ng = s × W samples of gaze. Each gaze sample is a 3D ray Gi pointing in the direction180

of the driver’s gaze, which we project into the camera coordinates to convert to a 2D pixel location.181

The 3D point on this ray we project into 2D is the first point of intersection with the world while182

ignoring the ego vehicle mesh (since the ego-vehicle windshield is not the point of interest). We183

transform the gaze into 2D pixel coordinates gi = MtGi ∀ i ∈ {1, 2, ..., Ng}, where Mt represents184

a transform from world coordinates to the coordinates of the camera used at timestep t. Note that this185

transformation accounts for the current pose of the ego-vehicle at time t such that the historical 3D186

gaze points are transformed into pixels corresponding to their location at that previous timestep. This187

means that sometimes older gaze points are out of the frame due to the traffic object’s subsequent188

motion. In our experiments, we use a gaze window of W = 10 s.189

Gaze pixel locations are represented as a fixed size dot (see “Gaze history map” in Figure 3). We190

also perform an ablation with a heatmap-based representation as is common with other literature191

(e.g. [22]) but found this to perform worse (see Sec. 5). To include a sense of temporality in the192

gaze, we fade the value of the gaze dot linearly from 255 to 10 across the window so that the most193

recent gaze dots are the brightest. Additionally, since drivers cannot gain new awareness during gaze194

saccades (see saccadic suppression, Ch 2. [23]), we perform gaze event detection using the I-BMM195

classifier [24] and exclude saccades from the gaze map.196

We also use an additional “ignore mask” to zero out losses from traffic objects that entered the user’s197

awareness more than W seconds ago. Consider a vehicle that entered the user’s awareness 15 s prior198

to the current timestep. If we use a history window W = 10 s, the driver gaze correlated with199

awareness of that vehicle is no longer represented, though the vehicle is still labeled as aware. If we200

penalize the network during training for mis-classifying that object, we are penalizing a prediction201

for which the network has incomplete information.202

Visual scene representation: The visual scene representation uses a binary object mask to represent203

the scene; the mask indicates the location of relevant dynamic traffic objects: vehicles, pedestrians,204

and two-wheelers. We choose to use a fixed size (600×800) image representation from a viewpoint205

in front of the ego-vehicle to control the scope of experiments. However, due to our formulation as206

a segmentation problem, our model can deal with arbitrarily sized inputs. This can be useful, for207

instance, when using wider aspect ratio visual inputs to represent the wide field of view that human208

drivers naturally have. The binary object mask was obtained directly from CARLA, but could be209

replaced by any off-the-shelf vehicle/pedestrian segmentation algorithm.210

Model and training details: We used a Feature Pyramid Network [25] segmentation model with211

a MobileNetV2 [26] backbone (pre-trained on ImageNet). The backbone was chosen for its low212

number of parameters (2M ) and runtime efficiency. While our dataset contained a similar number213

of aware to unaware objects, unaware objects usually were further from the ego-vehicle and occu-214

pied much smaller portions of the input images. We calculated the ratio of the unaware pixels to215

aware pixels in the label masks as about 1:20 and used an unaware class weight of 20 (background216

weight=10−5). We trained with the Dice loss due to its ability to handle class imbalanced data [27].217

5 Evaluation & Discussion218

Baselines: We compare our method to three baselines: the majority class, a common-sense gaze219

intersection baseline, and a prior art baseline using handcrafted features. The “majority class”220

baseline simply predicts the majority class in the test set (“unaware”: 53% share). The “gaze inter-221

section” baseline performs a simple check: if the driver’s gaze is within the segmentation mask of a222

traffic object (vehicle, pedestrian, or 2-wheeler) in the past T seconds, it assigns the aware label to223

it (others assigned unaware). We use T = 10, matching the other baselines.224

The prior art baseline (“handcrafted features”) is an SVM model that takes several handcrafted225

features as input and produces a binary label output [6]. We re-implemented their model based on226

the paper description (authors’ code or data were not publicly available). The original work lists227
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Model inf. Acc. Prec. Recall
cmplx. (↑) (↑) (↑)

Majority
class 1 52.99% 0.53 1

Gaze
intersection 1 46.87% 0.41 0.54

Handcrafted
features [6] N 65.47% 0.66 0.69

Ours 1 79.21% 0.83 0.77

(a) Performance of our model & baselines

Model Ablation Acc. Prec. Recall

No ignore mask 71.07% 0.79 0.62
Raw gaze 73.69% 0.84 0.61
Gaze heatmap 76.13% 0.85 0.65
No gaze fading 77.22% 0.85 0.69
Gaze 20s hist. 74.05% 0.83 0.60
Gaze 5s hist. 78.62% 0.87 0.70
RGB 59.92% 0.83 0.30

Ours (Full) 79.21% 0.83 0.77

(b) Ablations for our model

Table 1: Prediction performance of models and baselines on the SA prediction task. Our model out-
performs the non-trivial baselines on all 3 metrics and scales better as objects in the scene increase.
[inf. cpmlx. = inference time complexity with N objects, Acc. = Accuracy, Prec. = Precision]

5 sets of features, computed across a 10s analysis window (similar to the gaze history window in228

our method): Gaze point-based, Human visual sensory dependent, Object spatial-based, Object229

property-based, and Human short-term memory-based. We implemented the first 3 of these feature230

sets and the object type feature (vehicle vs pedestrian) from the “Object property-based” set. Most231

of the “Object property-based” features were excluded since they were difficult to compute and232

required privileged scene information (e.g. one feature required the state of the corresponding traffic233

light for every traffic object in scene; another was manually annotated). Human short-term memory-234

based features were also excluded since they were difficult to compute and did not contribute much235

(< 1% point) to overall performance in the original evaluation [6]. The original SVM was trained236

on 1078 training samples. Since neither the trained model nor code were available, we trained our237

implementation of the SVM on a subset of our training data. We trained the SVM on 10 episodes in238

our train set, which is about 3× the training data used in the original work. SVM implementations239

generally cannot handle very large datasets since the entire dataset is loaded into memory during240

training and mini-batch SVM training is non-trivial. To train the SVM, we used a machine with241

128GB RAM but could only use 15% of the training set.242

Experimental settings: Our dataset contains 80 episodes of which we used 64 (80%) for training.243

10% of the training episodes were used as the validation set. The test set was a separately held out244

set of 16 episodes. It was partitioned so that participants were disjoint between the train and test set.245

This is important since we want to test the generalization to new users; it would be impractical to246

put every new driver through the SA protocol when deploying such a system.247

We use 3 metrics to evaluate and compare methods: object-level accuracy, precision, and recall.248

For precision and recall, the positive class is the “unaware” class. This is because downstream249

applications such as driver assistance systems which alert the driver will care about how well our250

system can predict which traffic objects the driver is not aware of. “Precision” is thus a measure251

of how often our prediction of an object being unaware is correct — errors are “aware” objects252

classified as “unaware.” This type of error can lead to alert fatigue for an end-user [2]. “Recall,” on253

the other hand, indicates how many of the “unaware” objects in the dataset were correctly predicted254

— these are objects that the driver wasn’t aware of but our system predicted that they were.255

Results & Discussion Our quantitative evaluation results can be found in Table 1. The naive gaze-256

intersection baseline, as expected, performs the worst, confirming that it is not enough to simply257

count which objects were “gazed-at”. The prior art handcrafted features baseline performs better258

but significantly worse than our method. In terms of runtime, the prior art baseline has 2 expensive259

parts: computing features per object and doing SVM inference (this can be batched across objects).260

On average each part takes 5 ms, resulting in a total average runtime of (5N + 5)ms on an AMD261

5955WX CPU (for N objects in scene). In contrast, our network takes 11ms total for a forward pass262

(on a 4090 GPU) and does not scale with the number of scene objects. Some qualitative comparisons263

of model outputs can be seen in Fig. 4.264
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Figure 4: Qualitative results for our model and baselines. Each row represents an independent
driving scene. The RGB image shows the most recent 10s of gaze overlaid as red dots.

Our ablations (Table 1, right) show the performance impact of several design choices described in265

Sec. 4. In terms of gaze representation, the ignore mask (used to avoid penalizing mispredictions266

of awareness transitions outside the gaze history window) was the most important during training267

— responsible for an 8% accuracy drop when removed. Using saccade filtered gaze instead of raw268

gaze was the next most important. We also investigated the use of gaze heatmaps as the gaze repre-269

sentation similar to previous work [22, 28], in which each gaze point is represented by an isometric270

2D Gaussian that could accumulate in weight at fixations; this performed about 3% worse than us-271

ing fixed sized dots. This is similar to the issue of representing corrective clicks in an interactive272

segmentation task, where a similar result has been found [29]. The results indicate that the use of273

gaze fading was only responsible for about 2% of the model’s performance. This suggests that the274

presence and location of a gaze point within the gaze history window contains most of the informa-275

tion about awareness rather than the exact temporal order of the gaze. Finally, using an RGB image276

as input resulted in 20% worse accuracy with the same model size (except the initial layer), as the277

model now has to simultaneously perform segmentation and SA modeling.278

Limitations: Our proposed SA labeling protocol is mainly limited by the fact that some traffic279

configurations can lead to ambiguity in assigning a button — whenever there is more than one280

new object of the same type (vehicle or pedestrian) from the same cardinal direction relative to the281

driver. We created an interface for manual annotation to resolve ambiguities post-hoc. The biggest282

limitation of our model is its static, memoryless nature. Since SA is inherently a temporal signal,283

improvements can probably be achieved by performing temporal modeling. Currently, our method284

treats each timestep as independent and would require an external module to implement memory.285

6 Conclusion & Future Work286

We proposed a new interactive protocol to record human drivers’ object-level situational awareness287

that produces continuous and dense awareness labels. We use it to record a SA dataset with 20288

drivers in a VR driving simulator. Additionally, we use this dataset to train a driver object-level SA289

model by casting it as a semantic segmentation problem. Our model outperforms baselines and prior290

work while scaling better to arbitrary numbers of objects in the scene. In the future, we plan to use291

our driver SA model in the inner loop of a driver assistance system that provides intelligent alerts or292

interventions in safety-critical situations and evaluate this in a simulator-based user study. We also293

commit to releasing our code and data publicly upon acceptance in the hope that it will facilitate294

more work in the domain.295
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