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A Additional Related Work1

A.1 Situational Awareness: definitions from aviation to driving2

First popularized by Mica Endsley’s work in aviation, pilots’ SA was defined as “the perception3

of the elements in the environment within a volume of time and space, the comprehension of their4

meaning, and the projection of their status in the near future” [1]. According to Endsley, SA reflects5

the extent to which the operator knows what is going on in their environment and is the product6

of mental processes including attention, perception, memory, and expectation [2]. This definition7

laid out three levels of SA: (1) perception (of situational elements) , (2) comprehension (of their se-8

mantics), and (3) projection (of their futures states). In the original aviation context, these elements9

comprised instruments and instrument panels that pilots needed to maintain SA over in order to per-10

form the aviation task safely and successfully. However, in the driving context these scene elements11

not only comprise similar in-vehicle instruments such as the speedometer and rear-view mirrors, but12

also outside-the-vehicle elements such as other vehicles, bicycles, pedestrians etc. For tracking with13

respect to pilot/driver eye gaze, a functionally challenging difference among these elements is that14

the driving elements constantly change position relative to the vehicle while the aviation instruments15

are fixed and their locations are known. This difference makes is difficult to apply techniques (for16

grounding, evaluation etc.) from aviation directly to the driving case.17

A.2 Situational Awareness labeling methods18

At a high level, situation awareness (SA) grounding methods can be classified into direct (e.g.19

queries about objects for which SA is estimated) and indirect (SA inferred from secondary task20

measures such as response time to probes). As we discuss these, we will comment on the suitability21

of these techniques to generate per-object labels for learning a gaze-based per-object SA model.22

SA Label-
ing Method

Capture
Awareness
Transition

Dense
Object
Labels

Doesn’t Affect
Natural Gaze
Behaviour

SAGAT [5] × ✓ ✓
DAZE [4] ✓ × ×
SPAM [6] ✓ × ×

Ours ✓ ✓ ✓

Table 1: Our SA labeling protocol allows us to capture the transition in the driver’s awareness of
objects in the scene, allows labels for all objects in the scene without affecting the natural gaze
behaviour of the driver.
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(a) SAGAT freezes simulations or videos being watched (top) and then asks participants the location
of traffic elements (bottom). Image from [3].

(b) DAZE does not require pauses. It asks participants if they noticed particular types of traffic
elements and to mark their locations on an overhead GPS map. Image from [4].

Figure 1: Examples of SA labeling methods used in previous work. These methods produce inter-
mittent labels (SAGAT/DAZE) or sparse ones (DAZE —not every object is labeled).

A.2.1 Direct methods23

Within direct methods, we may classify grounding techniques into objective or subjective based24

on whether the probes involve questions about directly measureable quantities (e.g. number of red25

vehicles around you) or self-rated ones (e.g. perceived task load). We will first discuss objective26

measures. Perhaps the most well known and used direct objective method of Situational Awareness27

grounding is the Situation Awareness Global Assessment Technique (SAGAT) [7]. The SAGAT28

involves operators performing a simulated version of a real task such as driving. Intermittently, the29

simulation is paused (the screen can be blanked or only the background is presented) and the opera-30

tors are asked several questions about the situation right before the pause. Accuracy of responses to31

these questions determines the operators’ SA. SAGAT was first designed for aviation but has been32

adapted to driving [3]. Despite its popularity, SAGAT has its limitations mainly associated with33

the mandatory simulation pauses required. There are cognitive process modifications to the normal34

task because of removal from the task during the probe as well as intermittent task resumption de-35

viations [8]. For generating ground truth data for per-object SA, we also have some issues. One,36

we only get SA labels per queried object at the time of the probe —SAGAT probes do not give us37

the starting point of the operators’ SA for each queried object. Second, SAGAT querying requires38

pauses hence limiting the number of labels per drive that could be collected while maintaining the39

flow of simulation.40
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Another direct objective measure that mitigates some of these issues is Daze [4] which uses real-41

time in situ questions that resemble queries drivers are already familiar with (such as traffic queries42

from apps like Waze). In particular, shortly after an on-road event such as an accident has passed, it43

raises an alert asking a question such as “Traffic accident reported. Did you notice any emergency44

vehicles?”. While this method avoids pausing the simulation (an indeed can also be used for on-road45

driving), it does not provide dense, per-object labels in the way we require. Additionally, answering46

the query involves looking away from the driving scene and at a tablet or screen which undesirably47

modifies gaze behavior.48

In conjunction with objective methods, subjective measurements can be useful. For example, oper-49

ators’ perceived estimate of their own SA may important in determining their actions or interactions50

with an SA enhancing system. Here, we will only discuss the most commonly used subjective mea-51

sure: Situational Awareness Rating Technique (SART). SART is administered as a 14-part post-hoc52

questionnaire in which, operators rate on a series of bipolar scales the degree to which they perceive53

(1) a demand on their resources, (2) supply of operator resources and (3) understanding of the situ-54

ation. These are combined to provide an overall SART score [9]. However, there are limitations to55

SART as a measure of the operators’ SA. For example, consider unknowingly unknown scene ele-56

ments: operators cannot rate their SA on all scene elements if they didn’t know they missed some.57

Other factors are the influence of performance on SART, as well as confounding with workload [10].58

A.2.2 Indirect methods59

Within indirect SA grounding techniques, the most widely accepted protocol is the Situation Present60

Awareness Method (SPAM) [6]. SPAM involves a real-time probe (usually a verbal query about61

the past, present, and future aspects of the situation) while the operator is performing their primary62

task. While direct measures such as response accuracy are collected, SPAM importantly also uses63

response times as an index of how readily this information is available. For our requirements, verbal64

queries have the same label sparsity issue as Daze as well as requiring manual post-processing to65

get machine readable annotations from verbal responses.66

A.2.3 Physiological methods67

For the sake of completeness we must mention the use of physiological methods in the literature68

to measure operator SA. These signals have the benefit of being continuous variables rather than69

isolated or posthoc probes mentioned above. These methods have employed physiological signals70

such as EEG [11], respiratory rate [12], and heart rate [13] to measure SA. Of these methods, EEG71

has the most predictive power, while respiratory measures were found to have a negative correlation72

with SA [14].73

The most commonly used physiological technique was based on eye tracking. This included signals74

as blink rates, pupil dilation, but also behavioral characteristics such as fixation rates, dwell times,75

and saccade frequency to measure SA [14].76

However, physiological methods are noisy, show small correlations with SA, and only provide an77

overall impression of SA rather than per-object SA. The most promising physiological modality was78

eye gaze, with eye tracking based features forming the best performing predictors of SA. For a full79

treatment of this topic we refer the reader to Zhang et al. [14].80

B Situational Awareness Data Collection81

We use DReyeVR [15] as the VR-driving simulator. DReyeVR extends the Carla [16] simulator to82

add virtual reality integration, a first-person maneuverable ego-vehicle, eye tracking support, and83

several immersion enhancements such as mirrors and sounds. Our physical setup includes a HTC84

Vive Pro Eye as the head-mounted VR device, which has built-in eye tracking, and an available eye85

tracking SDK. For our driving hardware we use a Logitech G29 wheel and pedals kit. For driving86

routes, we use custom routes from several virutal towns shipped with CARLA. Furthermore, we87
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Figure 2: Sectors corresponding to the directions of the button presses. The objects in each sector
are target objects for button presses corresponding to the direction of the sector.

control the traffic in the simulation such that only a single vehicle or two-wheeler enters the FoV88

of the driver from a single direction at an intersection. If multiple objects enter the driver’s FoV89

from the same direction at the same time, even if the user presses the corresponding directional90

buttons multiple times, we use manual post-hoc annotation to resolve ambiguities for button press91

assignment to objects.92

B.1 Instructions provided to participants:93

The following prompt was read to participants before they underwent the first trial route. “Drive94

safely while following signs to the goal destination. Your main objective is to arrive at the destination95

as quickly as possible while driving safely. While doing so, you will also perform a secondary task by96

pushing buttons to indicate which vehicles, pedestrians or two-wheelers (collectively, traffic objects)97

you have perceived in the environment around you. Anytime you see a new vehicle please press one98

of the four arrow key on the left side of your steering corresponding to the direction in which they99

first appeared in your field of view. Similarly, for pedestrians and two-wheelers use the 4 buttons on100

the right. For each new traffic object you should only press the button once.”101

B.2 SA label inference from button presses102

Our SA protocol as described in Sec 3 of the paper, allows users to indicate their awareness of103

objects in the scene using directional button presses. The direction of the button corresponds to the104

direction of the object. Additionally, there are two sets of directional buttons for the users to choose105

from. One set corresponds to vehicles and the other set corresponds to pedestrians (+ two-wheelers).106

For example, when a user first becomes aware of a pedestrian on their left, they would press the left107

directional button from the button set corresponding to pedestrians.108

Our protocol provides us with button clicks, to convert these into awareness labels for object we109

need to associate button clicks with objects in the scene. We rely on the direction and the set of110

the button press to associate button presses with objects. We divide the entire scene into 4 sectors111

corresponding to the 4 directional buttons. (Fig 2). The top sector corresponds to the area between112

+30 and -30 degree from the ego vehicle. The left sector corresponds to the area between -60 and113

-120 degree, the right sector corresponds to the area between +60 and +120 degree. The back sector114
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lies between -120 and +120 degrees. The sector between +30 and +60 is considered both forward115

and right, similarly the sector between -30 and -60 is considered both forward and left.116

We keep a track of all the objects that enter each sector, and associate objects with the button clicks117

pertaining to each sector. The object in each sector, which has not been associated with any button118

clicks can be associated with a new button click. Objects are considered aware once they are asso-119

ciated with a button click, however once they re-enter of the field-of-view of the driver after leaving120

it for a certain amount of time, they are again considered unaware and can be associated with button121

clicks again.122

We control the traffic to ensure that there are only a single object of each type (vehicle, pedestrian)123

in each sector. However, to add randomness we also add a very small number of randomly spawned124

objects in the scene. Due to this, in certain situations participants’ button press inputs can be am-125

biguous relative to the traffic scene. One common scenario involved multiple potential target objects,126

in one sector. Additionally, there could also be human errors while pressing buttons, i.e incorrect127

button type, incorrect direction, or unintentional repeat button presses.To address these ambiguities,128

we developed a systematic approach to manually evaluate button press instances where the corre-129

sponding object was not immediately clear. We examined frames both before and after the button130

press, as well as the participant’s gaze history, to identify the most likely object associated with the131

button press.132

B.3 Route & traffic design:133

At least one safety critical scenario such as a jaywalking pedestrian was included in each route. We134

did so to ensure that driver gaze before and during safety critical scenarios was also represented in135

the dataset. These types of critical scenarios were included:136

1. Visible jaywalking pedestrian: A pedestrian visible without occlusions jaywalks into the137

ego vehicles path.138

2. Simultaneous vehicle turning and jaywalking pedestrian: A vehicle turns left or right while139

entering at an intersection opposite the ego-vehicle. A pedestrian jaywalks behind the140

turning vehicle.141

3. Occluding object jaywalking pedestrian: A pedestrian, visible from afar but occluded as142

the ego-vehicle nears, jaywalks into the ego vehicles path.143

4. Bicycle crossing after turn: Right after the ego-vehicle makes a right turn, a bicyclist144

crosses the road in front of the ego vehicle145

5. Emergency vehicles distracting from pedestrians: Emergency vehicles are parked near a146

residence. A policeman, partially occluded by a vehicle, jaywalks to the residence.147

See the attached video for examples of critical scenarios.148

C Modeling Driver SA149

Data representation details: The virtual camera used to generate visual sensor data for our model150

was fixed to be 1.3m above and 1.3m in front of the ego vehicle (measured from the center of the151

vehicle base). The camera had a 90◦ field of view and produced 800× 600 images.152

Model and training details: We used a Feature Pyramid Network [17] segmentation model with153

a MobileNetV2 [18] backbone (pre-trained on ImageNet). The backbone was chosen for its low154

number of parameters (2M ) and runtime efficiency. Our training procedure used the Adam optimizer155

with a starting learning rate of 10−4. The learning rate was scheduled to drop every 5 epochs by a156

factor of 5.157
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Figure 3: The Precision-Recall curve for our method and the handcrafted-baseline [3]. For our
method, we take the mode of predictions over all pixels pertaining to the object, to get the final
prediction for the object. To generate the PR curve, our predictions can be thresholded at two levels.
First on the raw pixel-level predictions, and second on the ratio of the predicted aware and unaware
pixels for a object. Thus, the first threshold level decides what should be the predicted score of a
pixel inorder to classify it as aware or unaware. The second level decides how many pixels should
be classified as aware inorder to classify this object as aware. To generate this curve we vary the
threshold of the raw-pixel level predictions and the second level threshold is fixed at 1. Due to these
two levels of thresholds, our method does not have precision = 1 or recall = 1.

Model Ablation Acc. Prec. Recall

Trained from Scratch 76.35% 0.80 0.73
DeeplabV3 69.88% 0.84 0.53

Handcrafted Features [3] 65.47% 0.66 0.69
Ours (Full) 79.21% 0.83 0.77

Table 2: Additional ablations for our model

D Additional Results158

A PR curve corresponding to the results in Table 1 in the main paper is shown in Fig. 3. We show159

two additional baselines in Table 2. We show the effect of pre-training the backbone on ImageNet160

by comparing it with a network we trained from scratch. The model from scratch was trained with161

an initial learning rate 10× higher but with the same decaying schedule. We also show results with162

replacing the Feature Pyramid Network with a DeeplabV3 [19], but it tends to perform about 10%163

worse. Unet models have been known to perform better for medical image segmentation where164

target objects are small and the background pixels dominate images [20]. Since our dataset has165

similar characteristics, this is an expected result.166
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