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Abstract— We designed an observer-aware method for creat-
ing navigation paths that simultaneously indicate a robot’s goal
while attempting to remain in view for a particular observer.
Prior art in legible motion does not account for the limited field
of view of observers, which can lead to wasted communication
efforts that are unobserved by the intended audience. Our
observer-aware legibility algorithm directly models the locations
and perspectives of observers, and places legible movements
where they can be easily seen. To explore the effectiveness of
this technique, we performed a 300-person online user study.
Users viewed first-person videos of restaurant scenes with robot
waiters moving along paths optimized for different observer
perspectives, along with a baseline path that did not take into
account any observer’s field of view. Participants were asked to
report their estimate of how likely it was the robot was heading
to their table versus the other goal table as it moved along each
path. We found that for observers with incomplete views of the
restaurant, observer-aware legibility is effective at increasing
the period of time for which observers correctly infer the goal
of the robot. Non-targeted observers have lower performance
on paths created for other observers than themselves, which
is the natural drawback of personalizing legible motion to a
particular observer. We also find that an observer’s relationship
to the environment (e.g. what is in their field of view) has
more influence on their inferences than the observer’s relative
position to the targeted observer, and discuss how this implies
knowledge of the environment is required in order to effectively
plan for multiple observers at once.

I. INTRODUCTION

Legible robot motion is path planning in a manner that
clarifies the robot’s objective in order to support human inter-
action, allowing an observer to infer the robot’s intent more
confidently and quickly [2], [17]–[19]. Previous approaches
to legibility focus on methods of defining highly-informative
paths, but often assume total path visibility, prioritize intent-
expressiveness early in the path [10], or are designed for
manipulators picking up objects rather than navigation.

Our key insight is that legible motions need to be visible
to the intended observer, otherwise their implicit message
may not be successfully perceived and these added efforts
will be wasted. This requires modeling the perception of the
intended observer. This approach will become increasingly
necessary as robots operate in larger, occluded environments
and observers are unable to maintain a complete view.

In this paper, we introduce observer-aware legibility,
which incorporates a model of the observer’s field of view
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Fig. 1: Paths of a server robot in a restaurant moving from
start location on the left to one of two tables Gtop and Gbot.
An observer in blue is seated at Gbot and looking to the right,
with their field of view in light blue extending towards the
right. Paths in white use the original “omniscient” legibility
formulation that assumes complete vision of the restaurant.
Paths in blue are generated with observer-aware legibility,
personalizing their movements to be both expressive and in-
vision for the observer.

(FOV) into a formulation of legibility for social navigation.
Observer-aware legibility can be used to create robot paths
that are both easier to see and clear in their destination.

We are motivated by the scenario of a robot server at
a restaurant [9], [24]–[26] telegraphing its intent to visit
a goal table with multiple unique observers. This social
navigation scenario provides a use case where the observer
fields of view are limited, pre-computable, and strongly affect
their ability to infer robot intent. However, observer-aware
legibility is appropriate for many other scenarios where
a human and robot are collaborating, such as warehouse
fulfillment, autonomous delivery, and sidewalk navigation.

Our goal is to generate approach trajectories for the robot
that are more legible to a target observer, as measured by how
well observers can infer the robot’s goal over time and the
length of the period they are ready for its arrival. To aid in a
more detailed comparison of legibility, we propose three new
metrics to assess observer understanding of legible paths:
envelope of readiness, clarity, and moments of confusion.

We deployed a 300-person online user study examining
how observer-aware paths are perceived by both the target
observer and all secondary observers at the same table.
We compared performance to the original “omniscient”
formulation of legibility [8], [22], that does not account
for observers’ fields of view, and find that observer-aware
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legibility is effective for observers with an incomplete view
of the scene.

However, we also recognize that personalizing movement
for one observer may be confusing to secondary observers.
Therefore, we also measured how observer-aware paths are
perceived by non-targeted observers. We find that secondary
observers have lower performance when observing paths
created for others, the natural consequence of specialization.

To further understand the impact of observer-aware paths
on secondary observers, we also investigated if performance
for secondary observers can be predicted from just their rela-
tionship to the target observer (i.e., how much overlap there
is in their fields of view). We found that the performance of
secondary observers is influenced not just by their physical
relationship but also by the secondary observer’s own view
of the scene, which indicates that knowledge of the scene is
also required in order to plan for multiple observers at once.

II. RELATED WORK

While our work is focused on a restaurant context, we
believe that these metrics and findings are broadly applicable
to legibility within several other navigation contexts.

Robots in Restaurants While currently limited in use,
robots have already been deployed in commercial restaurant
settings [26]. Among those deployed for serving tasks, the
majority of their utility comes from traveling to and from
tables: taking orders [25], transporting food to aid a human
waiter [9], or interacting with guests [24]. An effective
legible approach in this context could enable better service by
dynamically informing path planning, or simply optimizing
these static paths for better customer and waiter experience.

Social Navigation Work in social navigation has aimed to
enable robots to be human-aware while navigating a space
and improve a robot’s ability to navigate through crowds
of pedestrians [3]. Humans attempt to predict others’ actions
and motions by assessing their intentions in the given context
[7]. Therefore, generating intent-expressive paths for robots
may allow people and robots to more fluently navigate in the
same space. For example, motion conveying a robot’s plan
for avoiding an oncoming person leads to both the robot and
human being able to successfully predict the other’s motion
[20]. Studies have shown that increasing the legibility of a
robot’s motions decreases human effort and increases pedes-
trian trust in the robot [6]. These scenarios highlight both
that there is a need for generalizable legibility appropriate
for navigation, and that crowded navigation scenarios such
as a sidewalk present important secondary observers.

Legible Motion Legible robot motion is path planning
in a manner that clarifies the robot’s objective in order to
support human interaction. These motions are designed to
allow a human observer to infer the robot’s intent more
confidently and quickly [2], [17]–[19]. It has been shown
that path trajectories that do not match humans’ expectations
but convey the motion’s goal or intent are more legible, and
allow a human observer to infer the robot’s intent swiftly
and accurately [8]. Legibility has also been extended to other
socially communicative domains such as pointing [12].

Prior Assumptions of Legibility Most contemporary
legible motion planners assume that human observers are
“omniscient”- that they are aware of all changes in the robot’s
configuration as it moves. While momentary occlusions or
projections into a 2D-perspective have been considered, these
assume a default-visible scene with only minor interruptions
to vision [22]. Work to create a generalized formula for
legibility found drawbacks to the early-path exaggerated
movements of the original Dragan et al. formulation [5].
Deployment-specific context has also been shown to affect
interpretation of legibility, which supports that legibility for
navigation could present unique challenges [4], [30].

Limited Fields of View Our algorithm focuses on the
limited fields of view of observers within the same scene,
rather than the more general per-room models used in search
and rescue [15], use of line of sight obfuscation [14], or the
relative size of objects in view [27]. It does not default to the
assumption the robot is visible from beginning of the path
[22] and can choose a different moment to enter view.

Additional Applications The concept of combining one
of many nonverbal path-based communication strategies [28]
with our observer-aware model of when these signals can be
perceived could be extended to apply to other signals such
as passing direction [6], disapproval [1], hesitation [21], or
confidence [13].

III. OBSERVER-AWARE LEGIBILITY FORMULATION

Consider a robot that is navigating an area to one of several
possible goals G in G. An observer is watching this trajectory
to see which goal the robot is heading to. Our research aim
is to plan a path for the robot that is maximally legible for
the observer, i.e. gives them as much information as possible
about the robot’s goal for as long of a period as possible.

To formalize the problem, we parameterize the robot’s path
over time t as ξ0→T . We also assume a human inference
model P (G|ξ) which gives the observer’s chance of predict-
ing goal G from the specific trajectory, and use as a baseline
the “omniscient” legibility Lo created by [8], [22] as follows:

Lo(ξ) =

∫
P (G|ξ0→t)f(t)dt∫

f(t)dt
(1)

This equation averages across the entire path the probability
assigned by an omniscient observer to the true goal given
the path observed so far. Weighting function f(t) controls
the importance placed on this estimation at different points
on the path. This is set to f(t) = T − t, with the goal of
maximizing the clarity of goal inference as early as possible.

A. Modeling Limited Fields of View

In a navigation context, motions often take place over
a much broader space than observers can see. In Eqn.
1, weighting function f(t) assigned earlier points greater
importance than those later in the path.

However, incentivizing early legible movements is not
useful if observers cannot see these movements. Thus, we
weight the importance of each point based on its visibility.
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Fig. 2: Top-down view of visibility Vi at all points in the
restaurant for each observer Oi = {A,B,C,D,E} seated
at bottom right table Gbot, as well as omniscient visibility
Vo. VA and VB have a particularly poor view of the left side.

We model each observer Oi as located at point pi and
gazing in direction given by unit vector ui. Let θFOV be our
selected field of view (in our case, 120°) [11]. The visibility
of a point p with respect to observer Oi is defined as

V(O, p) = max
(
1− |θ(O, p)|

1
2θFOV

, 0

)
(2)

where θ(O, p) indicates the angle between gaze vector ui

and the vector from pi to p,

θ(O, p) = arccos

(
p− pi
|p− pi|

· ui

)
(3)

Intuitively, points along the path which are outside the
observer’s field of view will have a visibility of zero. Once
inside the viewable range, visibility linearly increases as
an object moves closer to the center of an observer’s field
of vision, with a score of one at the center. This enables
a smooth transition between in vision and out of vision
behavior. We can see how this works for every point in the
restaurant from each of our observers in Figure 2.

Now, unseen movements will no longer contribute to
legibility, and movements central in vision are preferred.

To incorporate this into assessment of legibility, we weight
the importance of points by their visibility V(O, ξt). This
weighting is no longer time-dependent. We normalize by the
maximum possible visibility for the path, which is T for
100% visibility. This guarantees L 7→ [0, 1].

Therefore we define observer-aware legibility as:

Loa(O, ξ) =
1

T

∫
Poa(G|ξt) · V(O, ξt)dt (4)

B. Impact of Limited Visibility on Likeliness of a Goal

In a navigation scenario with limited visibility, we cannot
assume that observers are able see prior parts of the path.
Including this history in our model of inference is particularly
harmful for observers who can only see late moments in
the path: out-of-sight history is incorrectly given credit
for impacting their inference. We instead only assume that
observers have knowledge of the static start and candidate
goal locations, not the entire path so far.

We define a local version of the human inference model
for the path so far, Poa(G

∗|ξS→Q), that depends only on

the point Q along the path where the robot is currently
observed. The probability of a goal based on the current point
is computed from the efficiency of arriving at that point on
the way to goal G compared to to other goals in set G. Given
that ξ̂A→B represents the shortest path from A to B, C is
the cost of a path, and S is the start location, this is defined
to be:

Poa(G|ξS→Q) ∝
exp

(
−C(ξ̂S→Q)− C(ξ̂Q→G)

)
exp

(
−C(ξ̂S→G)

) (5)

This equation is similar to the likeliness of a goal in [8],
but considers the relative efficiency of arriving at a point from
the start, rather than along a particular path. This heuristic
does not require observers have total knowledge of the path.

This incidentally makes our formulation compatible with
classic path planning algorithms such as A∗, no longer
violating the Markov property by relying on knowledge
of the path so far, nor therefore requiring an additional
dimension for search.

IV. EXPERIMENTAL DESIGN

Our overall aim is to investigate if our modifications to
observer-aware legibility improve the ability of observers to
infer the goal of each path in time for service. We anticipate
observer-aware legibility will enhance performance for the
targeted viewpoint, but that performance will fall off for other
increasingly dissimilar viewpoints.

A. Experimental Scenario

To investigate the effect on limited fields of view on
legibility, we created a restaurant scenario with a single
choice: “is the robot approaching me, or the other table?”

To gain a better understanding of the relationship between
viewpoint and path, we will be presenting a variety of paths,
and viewing these paths from the locations of five observers
OA, OB , OC , OD, and OE , with orientations 30°, 60°, 90°,
120°, and 150°, all seated around the same circular table seen
in Fig 1 labeled Gbot. The other table is referred to as Gtop.
All observers are able to see both goal locations, to avoid
requiring that users remember out of sight goal locations.

Independent Variables We will vary the following:

Goal: If the robot is approaching Gbot or Gtop.

Observer: Which of the five observers OA, OB ,
OC , OD, OE is viewing the scene.

Path: The path ξ observed. ξA, ξB , ξC , ξD, and ξE
each maximize observer-aware legibility for their
matching observers, and baseline ξo maximizes Lo.

Dependent Variables Our dependent variables are clarity,
envelope of readiness, and moments of confusion. These are
determined from user estimates of the likeliness that the robot
is approaching each goal, with definitions in section IV-C.

This comes out to 60 stimuli shown to each participant,
and is within-subjects.
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Fig. 3: OA simulator view.

Fig. 4: OE simulator view.

Fig. 5: Envelope of Readi-
ness: length of the final period
where the observer is correct.

Fig. 6: Clarity: Average cor-
rectness of observer’s guess
over the path.

Fig. 7: Moments of confusion:
times the observer re-enters
the unsure zone.

B. Deployment

We have developed a 3D restaurant simulator seen in Fig.
3 and 4. The robot waiter was a scaled up Kuri [16], and
we played a video of each of our 2D paths in this 3D
environment, captured from the perspective of each observer.

For each stimuli, participants were asked to report on a
slider their confidence that the robot was approaching Gtop

or Gbot. To ensure participants continuously reported this, the
video only played while participants held the slider control.

We deployed the study online, which consisted of a
tutorial introducing participants to the restaurant’s layout
and the mechanics of the slider, the 60 trials, and a final
questionnaire. Paths were deployed in a randomized order.

Ecological Validity Our simulation environment was in-
tended to be as realistic as possible, and included both a
restaurant interior and animations of other patrons eating. We
used a locked view with θFOV = 120°, intended to account
for human field of view including peripheral vision [11]. In
the wild, an observer could move their head, but the goal of
this study is to first examine legibility from a single view-
point. Future applications can investigate dynamic views, but
that will first require understanding static viewpoints.

C. Metrics

We introduce new metrics for legibility that take advantage
of the continuous nature of our data collection: envelope
of readiness, clarity, and moments of confusion. They are
applicable to any dataset with multiple datapoints of user
certainty over the path, and expand on state of the art [29].

These metrics target the goals of intent-expressiveness: we
want observers to have a high overall understanding of the
robot’s goals, and be ready when the robot arrives.

Envelope of Readiness (EoR) We define “envelope of
readiness” as the final percent of a path an observer is certain
of the robot’s goal without wavering. This is the period for
which an observer is correct and ready for robot arrival.

To quantify this, we divide slider responses into three
discretized zones: unsure, correct, and incorrect. Based on
our pilot studies, unsure is defined as +/- 5% from the middle
of the slider. Correct and incorrect are on corresponding
sides of this boundary. Our envelope of readiness is the length
of the final period for which the observer is correct (Fig 5).

top OA OB OC OD OE Oo

ξo 25% 43% 68% 100% 100% 100%

ξA 44% 50% 61% 100% 100% 100%
ξB 44% 50% 63% 100% 100% 100%
ξC 38% 51% 66% 100% 100% 100%
ξD 25% 45% 70% 100% 100% 100%
ξE 26% 39% 65% 100% 100% 100%

bot OA OB OC OD OE Oo

ξo 25% 29% 32% 41% 100% 100%

ξA 43% 47% 57% 100% 100% 100%
ξB 44% 50% 59% 100% 100% 100%
ξC 43% 48% 59% 100% 100% 100%
ξD 36% 43% 57% 100% 100% 100%
ξE 28% 35% 49% 100% 100% 100%

TABLE I: Percent of time visible for each path and observer.
Bolded values indicate the observer targeted by each path.

This metric improves on state of the art by decreasing
the value of paths that are confusing in the middle [29],
and verifies if early guesses remain accurate. By counting
from the end of the path instead of the beginning, this metric
accounts for consistent accurate inference through the path’s
critical final approach. We expect observers to be correct by
the end of paths when seeing the robot arrive.

Clarity We define “clarity” as the overall confidence ob-
servers have of the correct goal over the path. We assess this
by mapping 100% correct confidence to one, and incorrect
to zero. This value is averaged over the path (Fig 6).

Moments of Confusion (MoC) We pinpoint confusing
times during paths by defining “moments of confusion” as
when a participant re-enters unsure after exiting that zone
(Fig 7). These timestamps can be used to localize confusing
sections of the path, and multiple can occur within a path.

D. Path Selection

Our paths were selected via a sampling approach, rather
than direct optimization. We generated a series of paths from
the start to each of the goals with the constraint that they had
a final approach angle that is perpendicular to the approach
table with no collisions. This mimics the behavior of an
actual waiter, and provides a final approach that all viewers
can see. These paths were segmented to reflect the physics
of a real-world wheeled robot executing the path.

For each observer Oi we select the path ξi with the highest
observer-aware legibility for that observer. These paths can
be viewed in Figure 8.

To gain intuition for how observer-aware legibility creates
an improved amount of time in sight, Table I shows the
percent of time that each path is within-view for each
observer. Note that ξo is not visible for much of OD, but
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Fig. 8: The complete set of paths tested, with paths ξi
corresponding to observer Oi and colored accordingly. White
paths ξo are created using omniscient legibility Lo.

that observer can see it at the beginning of the path.

E. Hypotheses

Our hypotheses seek to first determine the value of
observer-aware legibility, then investigate how these paths
are perceived by non-targeted secondary observers.

H1: Observer-aware legibility improves an observer’s abil-
ity to see the path, and thus overall legibility.

H2: Performance falls off for non-targeted observers. An
observer’s neighbors will perform worse than their person-
alized observer-aware baseline when looking at paths made
for a different observer.

H3: Neighbors with an equal offset from the target ob-
server will not have the same performance; the observer with
a better view of the area the robot approaches from will
perform better.

V. RESULTS

We recruited 300 participants (126 Female, 162 Male,
9 Nonbinary, 3 Other) through Prolific [23]. The age of
participants ranged from 18 to 49 (M=24.3, SD=5.14). Our
research was approved by CMU’s institutional review board,
and participants were paid US$5 for the 20-minute survey.
Under 1% of individual trials did not successfully log; users
without complete sets of trials for a condition were excluded
from corresponding repeated measures (RM) ANOVAs.

For each hypothesis, separate statistical tests were per-
formed for independent sets ξtop and ξbot. For all statistically
significant initial results, we conducted a post hoc using a
paired-samples t-test with Bonferroni correction.

A. H1: Omniscient vs Observer-Aware Legibility

For each goal location, we conducted a two-way repeated
measures ANOVA between observers and the two path
personalizations (PP): omniscient (ξo) and observer-aware
legibility targeted at each observer.

EoR. Among ξtop, both observer (F (4, 1104) = 150.2,
p < .001) and PP (F (1, 276) = 4.5, p < .05) had a
main effect on EoR. There was an interaction effect between

(a) Envelope of Readiness.

(b) Clarity.

Fig. 9: Results for H1: Observer-aware legibility improved
both EoR and clarity performance for OA, OB , and Obot

C ,
but was not effective for Obot

D,E with more complete views.
Clarity was also lower for Otop

C , a relatively complete view.

observer and PP (F (4, 1104) = 10.4, p < .001). Among
ξbot, only observer had a main effect (F (4, 1112) = 197.1,
p < .001), not PP. There was an interaction effect between
observer and PP (F (4, 1112) = 49.3, p < .001). Post hoc
test results are in Fig 9a.

Clarity. Among ξtop only observer (F (4, 1104) = 76.1,
p < .001) had a main effect on clarity, not PP. There
was also an interaction effect between observer and PP
(F (4, 1104) = 9.2, p < .001). Among ξbot, only observer
had a main effect (F (4, 1112) = 99.5, p < .001), not PP.
There was an interaction effect between observer and PP
(F (4, 1112) = 27.7, p < .001). Post hocs are in Fig 9b.

MoC. Among ξtop no main effect or interaction effect for
PP was found. Among ξbot, observer (F (4, 1112) = 5.4,
p < .001) and PP (F (1, 278) = 19.4, p < .001) had main
effects, and there was an interaction effect between observer
and PP (F (4, 1112) = 4.6, p < .001). Among ξbot, post hoc
tests showed that ξo had fewer moments of confusion than
three observer-aware paths: OA (.34 vs .59, p < .05), OB

(0.38 to 0.81, p < .001), and OE (0.18 to 0.31, p < .05).

B. H2: Non-Targeted Observers.

Our hypothesis is only about interaction effects, so we
only report these results of the RM ANOVA.

EoR. Among ξtop, there was an interaction effect between
observer and path target (F (16, 4160) = 28.1, p < .001).
Among ξbot, there was an interaction effect between observer
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(a) Envelope of Readiness (b) Clarity

Fig. 10: Results for H3: Performance for observers to the left and right of the observer that the path is personalized for.
Despite both observers having the same offset from the target, the right observer consistently outperforms the left, likely
due to having more of the scene within their FOV. Paths for a central observer are not equally effective for both neighbors.

(a) EoR (b) Clarity (c) MoC

Fig. 11: Results for H2: Difference in performance for
secondary observer on paths targeted at a different observer.
Values along the diagonal are by definition zero. Intuitively,
paths designed for other observers are less effective than
those targeted for the viewing observer.

and path target (F (16, 4112) = 3.4, p < .001), but post hoc
tests did not show statistical significance.

Clarity. Among ξtop, there was an interaction effect
between observer and path target (F (16, 4160) = 21.9, p <
.001). Among ξbot there was an interaction effect between
observer and path target (F (16, 4112) = 2.3, p < .001), but
posthocs revealed no results of relevance.

MoC. Among ξtop and metric MoC there was an interac-
tion effect between observer and path target (F (16, 4160) =
3.2, p < .001). Among ξbot no interaction effect was found.

For all significant interaction effects found, Gtop for each
metric, significant post hoc test results are visualized in
Figure 11.

C. H3: Neighbor Offset Direction

To assess H3, we examine observers with a neighbor offset
on either side: OB,C,D. For each index, we examine the
impact on performance for a secondary observer offset to
either direction, left and right. For B this is OA and OC , for
C this is OB and OD, and for D this is OC and OE .

EoR. Among ξtop both index (F (2, 568) = 76.8, p <
.001) and offset (F (1, 284) = 66.9, p < .001) had a main
effect on EoR. There was also an interaction effect between
index and offset (F (4, 1104) = 10.4, p < .001). Among

ξbot, both index (F (2, 566) = 21.8, p < .001) and offset
(F (1, 283) = 101.8, p < .001), and there was an interaction
effect between index and offset (F (2, 566) = 13.3, p <
.001). Post hoc test results can be seen in Fig 10a.

Clarity. Among ξtop both index (F (2, 568) = 33.7,
p < .001) and offset (F (1, 284) = 23.2, p < .001) had a
main effect on clarity. There was also an interaction effect
between index and offset (F (2, 568) = 4.2, p < .05).
Among ξbot both index (F (2, 566) = 6.3, p < .01) and
offset (F (1, 283) = 38.6, p < .001) had a main effect,
and there was an interaction effect between index and offset
(F (2, 566) = 6.1, p < .01). Post hoc results are in Fig 10b.

MoC. Among ξtop, there was an interaction effect between
index and offset (F (2, 568) = 3.1, p =< .001). No
significant results were found among ξbot, nor in post hoc
tests for ξtop.

D. Takeaways

H1 is partially accepted. Observer-aware legibility is ef-
fective for observers with a limited view of the scene. For
observers with a complete view of the scene, observer-aware
legibility was not as effective.

H2 is partially accepted. Performance for non-targeted
observers was often lower than for their own on Gtop.

H3 is accepted. Neighbors to the right have consistently
better performance than those to the left, despite both having
the same offset in angle and location from the target observer.

E. Qualitative Feedback

Table II presents a summary of the qualitative feedback
gathered in the post-study questionnaire. Participants fre-
quently commented on the robot’s gaze direction, explaining
that the robot’s inability to make eye contact with guests at
its intended table was a source of confusion. Participants said
that it would be easier to understand the robot’s behavior if
“... the face turn[ed] in the direction of the table to which the
robot [would] go” and if it had “facial expressions and eye
contact”. Another participant noted that when “the robot was
looking in another way, [it] made it a cold and impersonal
experience, even when it stopped at my own table”.
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If you were a
server, how would
you make your
path clear?

#

How did you
determine which
table the robot
was
approaching?

#

Hard to
understand
about
robot
motion

#

Eye contact or
gaze 156 Direction of

movement 158 Sudden
changes in
direction

89
Direct/straight path 88
Nonverbal
indication other
than eye contact

14 Eyes or where it
was looking

92 The
robot’s
eye-gaze
or heading

41

Verbal indication 11 Robot’s distance
from goal tables
(path efficiency)

63Follow lines on
floor 7

TABLE II: Frequency of participants’ comments. Totals do
not sum to 300 due to multiple comments.

Similarly, participants reported being surprised by the
robot turning, especially in combination with confusion
surrounding the robot’s gaze. This was exemplified by com-
ments such as “[it was surprising] when [the robot] was
headed to a table and suddenly turned to another” and “[it
was surprising] when [the robot would] look at me when
it was to go to the other table”. This supports the idea that
heading is a primary signal for inference in social navigation,
rather than distance from table.

VI. DISCUSSION

Overall, we found that observer-aware legibility was most
effective for disadvantaged viewpoints such as OA and OB

and Obot
C . For better viewpoints such as Obot

D , Obot
E , and Otop

C ,
observer-aware legibility was less effective.

Secondary observers found paths targeted toward others
less clear than the path personalized to them. This indicates
that we are correctly tailoring paths to each observer, but
also that personalizing a path to one observer means it is
unlikely to be equally effective for others.

We also found that performance for secondary observers is
not just dependent on their relationship to the target observer,
and requires understanding their view of the environment.

A. Audience-Aware Legibility with Multiple Observers

While our formulation of observer-aware legibility allows
us to model how multiple individual observers with limited
views may perceive the same path, developing an audience-
aware algorithm for creating paths that are maximally legi-
bile for multiple observers is more complex than targeting a
single observer. Positive H2 results indicate observer-aware
planning for a single observer does not generalize to all other
potential observers. Positive H3 results imply we cannot
create a multiple-observer formulation without considering
observers’ relationships to the scene, not just each other.
Thus, a policy for modeling multiple viewpoints at once must
incorporate more than just observers’ relative locations.

To adapt to multiple viewpoints, our legibility formulation
needs to consider multiple fields of view, but it is not clear
how to combine them. Summing strong viewpoints with
weak ones can lead to paths that neglect weak viewpoints.
On the other hand, overvaluing the most restricted viewpoint
can lead to degraded performance for observers with wide

Fig. 12: Moments of confusion for all OA viewing ξA, count
denoted by dot size. The cluster of MoC after the sharp turn
may mean this change of heading is misleading despite Eqn.
5 indicating a high likelihood of Gbot throughout.

views. As a result, audience-aware legibility may need to
decide when to prioritize certain observers over others.

B. Heading-Based Goal Inference

The original omniscient and new observer-aware legibil-
ity formulations both calculate the human inference model
P (G|ξ) based on path efficiency. However, in social nav-
igation, we propose that a formulation of P (G|ξ) based
on heading may be more effective. Small deviations from
the centerline between the goals can strongly impact Eqn.
5, but are often unclear to observers. This is supported
by comments in V-E. This may also explain why despite
performance improving for targeted observers, MoC also
increased. We suggest that the sharp turn of these paths led
to users feeling the robot was going to pass them despite it
always being closer to Gbot than Gtop, as seen in Fig. 12.

C. Impact of Preferring Centrality Within FOV

When comparing ξtopE and ξbotE in Fig. 8, it seems sur-
prising that these paths are so different from each other
and ξo. Observer-aware legibility (Eqn. 4) is calculated by
maximizing centrality within the field of view, V , combined
with likelihood of goal, P (G|ξ), over the entire path. In
this case, P (G|ξ) pushes paths away from the centerline
between the goals, while V incentivizes moving directly to
the center of the observer’s sight. In the ξtopE case these work
together, but for ξbotE these are in opposition and lead to a
less exaggerated path.

This suggests for complete viewpoints it might be more
effective to change visibility to a binary variable indicating
if a point is in sight. The drawback is this can create an
abrupt change in curvature when reaching in-vision areas,
which may lead to confusion or mistrust from observers.

A model of goal inference based on heading as described
in VI-B could also prevent this issue, as ambiguous headings
below the centerline would no longer be considered clear.

D. Additional Applications

Although this work focused on creating a very visible
legible robot, we could imagine inverting this to disincen-
tivize being in view. An unobtrusive “butler” or “ninja” robot
could plan paths which avoid visibility completely, or only
appear when their clarity is sufficiently unambiguous. One
could also imagine a “town crier” styling built on these
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equations where the robot’s path is planned so as to engage
the attention of all the observers in an area, then proceed to
a most-visible area to deliver a performance or message.

While our simulation environment is most effective at
testing the informational aspects of these paths, an in-person
study would be able to characterize the visceral and emo-
tional reactions observers have to these different interaction
styles. Opinions may change if observers perform a distractor
task such as eating, rather than solely focusing on the robot.

Now that P (G|ξt) is uncoupled from path history, it can be
assessed for static locations in the restaurant. This can enable
us to assess a restaurant layout and fields of view within it
for how potentially informationally dense or ambiguous they
are for observers, which could inform design for traffic, or
placement of screens to constrain observer focus.

VII. CONTRIBUTIONS

In this paper, we developed an algorithm for observer-
aware legibility that is appropriate for limited viewpoints,
and we assessed it using novel metrics relevant to legibility
within social navigation contexts such as envelope of readi-
ness, clarity, and moments of confusion. We also created a
method for gathering continuous data about user inferences
throughout a robot’s path. We performed a 300-person user
study of observer-aware legibility studying the experience
of different targeted observers in a restaurant context. Our
study verified that observer-aware legibility is most effective
for observers with limited perspectives, but may have draw-
backs for observers with more complete viewpoints of the
scene. We showed that assessing the relative performance of
different observers must take into account their relationships
to the environment, which means audience-aware legibility
must consider both observers and their environment.
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