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Abstract
The goal of this work is to train a model to quantify
mental states such as neediness and interruptibil-
ity from human action patterns in restaurant sce-
narios. Our long-term vision is to develop robot
waiters that can intelligently respond to customers.
Our key insight is that human behaviors can both
actively and passively communicate customers’ un-
derlying mental states. To interpret behaviors indi-
cating neediness and interruptibility, we automati-
cally label key moments of human service patterns
in restaurants based on waiter location and objects,
as well as human behavior patterns in terms of pose,
facial expression, and facial action units. Our ef-
fort to build a model is complicated by a lack of
ground truth information, unreliability in waiter ac-
tions, and the effect of distractions and non-service
social interactions on customer signals, and we pro-
pose solutions to each of these issues. We plan to
compare the performance of several machine learn-
ing methods in predicting moments when waiters
attend to customer needs based on this model.

1 Introduction
For robots to be able to autonomously aid humans in tasks, it
is key that they be able to identify when humans need help,
and when that help can be best administered. We specifically
seek to model and test these skills in a restaurant setting, with
the goal of providing information that will enable robots to
act as waiters and proactively address customer needs.

In this work we define two human mental states that robots
providing aid should act on: neediness and interruptibility.
Neediness is the potential impact of receiving aid at certain
point in time on customer experience. Notably, kinds of im-
pact include objective aid such as delivering food, intangible
aid such as receiving information on what a customer wants
to order, as well as emotional reactions such as a growing im-
patience over time that can provide impact by being resolved.
We define interruptibility as a numerical descriptor of the re-
ceptiveness of a human to a waiter providing help at a given
moment. These models will allow robotic waitstaff to deter-
mine which customers need waiter help the most, and then
plan the best time to deliver that help.

Overall, needs can be divided into two categories: system-
atic and reactive. Systematic needs include those that a com-
pletely naive robot with no emotional insight could plan on
attempting to address. This includes many of the standard
elements of a restaurant service outlined in Figure 1 such as
asking for orders, delivering food, and cleaning up.

Reactive needs arise over the course of a meal, and are tied
to customer emotional state. These include reacting to a cus-
tomer with questions about the menu, or is growing impatient.
These can arise at any time, and are signaled most directly by
customer behaviors. Notably, reactive needs are often tied to
systematic causes that can be addressed.

The goal of our metric of neediness is to incorporate both
of these aspects of need. This will allow our system the bene-
fit of being able to recognize reactive cues that indicate rising
systematic problems that can be addressed, while also not ne-
glecting customers that happen to be less expressive.

Interruptibility seeks to describe when that help should be
administered, and is a measurement of whether it would be
appropriate to interrupt a customer’s current task. It is most
closely aligned with the prior work of [Banerjee et al., 2018],
which classified users into categories of interruptibility.

Being able to assess and predict these metrics of needi-
ness and interruptibility will enable more sophisticated col-
laborative and managerial behaviors such as deciding which
group of people to prioritize, assessing overall group satis-
faction over time, and scheduling future interactions so as to
minimize overall neediness or wasted effort.

The models we build are based entirely on data on restau-
rant interactions found in the wild. This gives us a very re-
alistic substrate for modeling these human interactions, with
examples of natural customer reactions and interactions, as
well as data on the observed decisions of waiters.

Notably, such a system could provide obvious value to in-
stances where a robot is working as waitstaff, and it could also
provide useful managerial skills in a human-only or blended
human-robot environment. For example, the ability to gauge
the levels of human neediness can allow the system to mark
understaffed areas of the restaurant, alert staff to individuals
who have been overlooked or have an urgent issue, and sched-
ule tasks or food preparation in anticipation of future needs.

The ability for robots to initiate interactions to administer
help is particularly valuable in high-distraction scenarios with
multiple groups of humans who have competing needs. These



Figure 1: Flowchart describing the systematic needs of a table during the course of a restaurant experience

situations also inherently contain many additional patterns of
human behavior that make isolating only signals of neediness
or interruptibility difficult. However, due to the structured
nature of competing group conversations or background dis-
tractions, it may be possible to identify and extract recurring
configurations of distraction. In order to meet these goals, we
seek to address several challenges:

1. Finding the Ground Truth: Translating video streams
of real-world restaurant interactions into feature and re-
ward signals we can use for training.

2. Noisy Reward Signal in Waiter Actions: Accounting for
the imperfect nature of using waiters as training signals.

3. Structured Noise in Customer Signals: Identifying re-
curring patterns in customer attention and behavior that
obscure signals that contribute to our target metrics.

2 Background
In commercial restaurant settings, robots have primarily been
deployed to assist waiters by carrying food on a static tray
[Pieska et al., 2013]. These robots do not yet independently
perform customer interaction tasks except in very specialized
scenarios. Many are even limited to remaining on tracks.

However, robots with a focus on social awareness have
been deployed in a bartending context. JAMES, created by
the University of Edinburgh, is a robot built to demonstrate
the value of being able to interpret and respond to human so-
cial cues in a bar context [Foster et al., 2012]. This setting
emphasized the value of this genre of tasks, however, it re-
quired a fixed-location robot and depends on humans directly
approaching and soliciting the bartender. Our system aims to
detect growing problems before a customer feels the need to
actively ask for help.

Our work also builds on the work of [Banerjee et al., 2018].
This work highlighted the usefulness of object labels as vi-
sual indicators of human interruptibility, and inspired our fo-
cus on examining whether this kind of feature can be used for
automatically labeling key moments or states in human inter-
actions, or as features for classifying both neediness and in-
terruptibility. Our model seeks to add additional meta-object
features by combining information about multiple objects in
the scene, as well as incorporating human features such as
pose with object information to determine which objects a
human is focused on within a multi-object scene.

3 Challenges
3.1 Finding the Ground Truth
A strength of our approach is the use of data taken from “in
the wild” because it is captured in a natural, non-lab environ-
ment. Our data comes from publicly available video streams
from inside restaurants, published by those establishments in
order to increase tourism and help potential visitors assess
traffic. Specifically, our data so far as been collectd from
Myrtle Beach’s Ridtydz beachside bar [Bar, ] public-access
webstream. These streams consist of 2D RGB video from a
single high viewpoint, with no audio. While the presence of
cameras often does influence human behavior [Jansen et al.,
2018], there should not be changes in behavior due to the nov-
elty of the camera, because the web stream we are working
with is longstanding.

The choice to use unannotated “in-the-wild” streams with
no method for interacting with the scene or asking people in
the scene for additional information complicates the process
of directly determining a “ground truth” for the neediness and
interruptibility of a given customer or table. Manual labeling
will be challenging, due to the fact that it is difficult for the la-
beler to understand the complete underlying context. Instead
we plan to gather sufficiently large sets of real-world data to
learn the strategies being used by waiters from scratch, and
break down relevant customer behaviors granularly enough
to capture the relevant signals. Both of these constraints lead
to our decision to focus on automated methods of extracting
and labeling features.

To gather features from these 2D RGB video streams, we
are using OpenFace [Baltrusaitis et al., 2018] and OpenPose
[Cao et al., 2018] to collect information on each customer’s
head position, torso position, and facial action units to look
for indicators of reactive neediness, as well as interruptibility.
An example of this kind of feature can be found in Figure 2.

We also use TensorFlow’s Object Detection API [Huang
et al., 2017] trained on the Common Objects in Context
(COCO) dataset [Lin et al., 2014] to identify the type and
location of key objects in dining scenes. Object and person
tracking information can be used as features for classification,
as seen in Figures 3 and 4, as well as to provide automatic la-
bels for our data. By tracking the location of the waiter in
the scene as compared to tables in the scene, as well as the
appearance or disappearance of objects from the table, we la-



Figure 2: OpenPose on restaurant footage
Figure 3: TensorFlow and COCO object
recognition on restaurant footage

Figure 4: Object detection on restaurant
objects

bel systematic needs that are being addressed by waiters over
the course of service. For example, if menus disappear from
the table after a waiter interaction, we assume that the waiter
took order information from customers.

By automating the generation of these labels, we can col-
lect and model a larger corpus of data, and it may be able to
better capture overall service patterns than human labeling of
short segments could.

3.2 Noisy Reward Signal in Waiter Actions
In an ideal world, the waiter would never miss indicators of
need, and would address them immediately. Unfortunately,
real world restaurants are more complex than this. Waiters
can be distracted, miss cues due to occlusion, or have other
tasks that consume their time and attention.

However, the waiter does remain a valuable signal for cus-
tomer neediness and interruptibility. To make this problem
tractable, we make the following assumptions about the mo-
ment a waiter visits a particular table:

1. The neediness of the table was monotonically increasing
before the waiter’s arrival.

2. The neediness of the table drops after the waiter visits it.
3. The table the waiter is visiting has the highest neediness

of all tables within the scene.
4. The table was sufficiently interruptible for a waiter visit.
Using these assumptions, we can still glean information

from moments that the waiter approaches the table that can
be used as a reward signal for training a model.

Furthermore, as noted in Section 3.1, by incorporating ob-
ject recognition we can more granularly classify the category
of task that the waiter might have performed at a table by
identifying objects they brought or removed it. This can en-
able us to identify systematic needs being addressed by the
delivery of objects or taking of orders, as well as potential ad-
dressing of reactive needs in the scenario that a waiter makes
no object changes to the table.

3.3 Structured Noise in Customer Signals
While food is a major reason that customers visit a restaurant,
distractions such as company and entertainment are also cru-
cial aspects of the experience that affect their behavior. This
“structured noise” has patterns that we can both interpret and

extract from our signals of neediness and interruptibility. For
example, inanimate elements such as televisions, windows,
and cell phones consume attention and can obscure passive
signals. Group conversations are more complex to recognize
and generalize over than interactions with static objects, but
they are particularly relevant to determining interruptibility.

This is a unique challenge to restaurant scenarios compared
to a one-to-one interaction with a shorter timespan, such as
ordering at a bar. The static position of chairs at the table
means that techniques used for studies of humans interact-
ing in standing F-formations [Cristani et al., 2011] are less
directly applicable. Humans are distractable [Stewart and
Chase, 1999], and it is unreasonable to assume that their only
focus is generating signals to cue their waiters. In fact, this
would defeat the goal of requiring less manual demand for
service from customers.

There are two kinds of distractions we hope to capture: so-
cial and non-social. Non-social distractions can be detected
with the feature-detection methods outlined in Section 3.1,
such as checking for common distraction objects such as a
cell phone, an approach similar to [Banerjee et al., 2018].
Other objects of focus can potentially be detected using a
combination of ray-tracing customer gaze based on head pose
and checking for intersection with detected objects, as in the
case of a wall-mounted television or a window view.

Recurring patterns of social interaction are more difficult to
characterize, in part because of the 3D nature of human inter-
actions. Even given the locked positions of table chairs, hu-
mans can sit in several positions that are symmetrical from the
perspective of their social interaction with other table mem-
bers, but not from the point of view of our single-angle cam-
era. For example, there are 4 homographic seatings of 3 cus-
tomers at a four-person table with respect to their intra-table
interactions. Therefore, our feature space for group inter-
actions needs to account for recurring configurations in 3D
space, which do by translating 2D OpenPose data into 3D
pose information using the work of [Martinez et al., 2017].

4 Methods
In addition to defining our problem, we have so far success-
fully extracted features from our livestreams in the wild, and
developed mechanisms for detecting when customers visit a
table, and when a waiter interacts with a given table. We have



(a) Waiter visiting a table (b) Distraction: person on phone

Figure 5: Challenges in interpreting in-the-wild footage

also created a simulation and data synthesis environment for
creating and displaying example scenarios to test future mod-
els. Our next steps are to consult with waiters who can pro-
vide expert insight into our problem, as well as to train and
test several machine learning models of neediness and inter-
ruptibility.

4.1 Feature Extraction
We have built a pipeline for downloading livestreams of
restaurant 2D RGB video and extracting the features men-
tioned in Section 3.1. We automatically labeling the window
that customers are at a table by tracking the number of mov-
ing objects within the pixel bounds of a table space, and track
the waiter location and time of visits by noting recognized
people who do not remain at a particular chair. We are in the
process of combining these features to label systematic needs
from more granular object analysis, as well as attempting to
label non-animate objects of focus from those features.

4.2 Waiter Interviews
To attempt to shed additional light on the mechanisms of hu-
man assessments of neediness and interruptibility as related
to service in restaurants, we plan to interview several waiters
to learn how they perform these tasks and incorporate them
into planning. We are specifically most interested in under-
standing the inherent model that human waiters already apply
to this task, as well as key features that they rely on.

4.3 Data Synthesis and Simulation Environment
For testing purposes, we have developed a simulation envi-
ronment that generates 3D data and animations using V-REP
[Rohmer et al., 2013]. This systems accepts either restaurant
footage or short descriptions of sequences of common events,
and generates visualizations as demonstrated in Figure 6. It
is also able to generate 3D representations of customer poses
based on the 2D RGB footage as based on the work of [Mar-
tinez et al., 2017].

Future work will expand the palette of script options,
and add the ability to generate generalized versions of data
that vary parameters such as exact customer dimensions and
group placement at a table to investigate the importance of
these features and attempt to prevent over-fitting based on

Figure 6: Dining scene in simulation environment

these features. This environment will also be used for future
testing of planning and scheduling algorithms that depend on
integration with an actual robot waiter.

4.4 Model Creation and Validation
Given our inputs of automatically labeled interactions, indica-
tors of systematic and reactive needs, and our assumptions of
waiter interaction, we plan to deploy several machine learn-
ing models to attempt to create metrics of neediness and in-
terruptibility, then assess their effectiveness predicting future
waiter visits. Proposed models include:

1. Hidden Markov Models (HMMs), which are useful for
modeling hidden states that generate observable signals,
but have low interpretability and might provide insights
too coarse for our purposes. One way to address this is
to develop a different HMM for each individual need.

2. Long Short-Term Memory networks, which excel at
modeling features that include time delays, but require
large quantities of data to be effective, which may be
beyond even our automatedly labeled corpus.

3. Conditional Random Fields, which excel at predicting
structured data, therefore could account for the underly-
ing flow of systematic needs outlined in Figure 1. This
technique has also seen previous success in predicting
interruptibility in the work of [Banerjee et al., 2018].

5 Contributions
We have outlined an interesting and valuable problem re-
quired for robots to effectively take initiative in providing
aid in a restaurant scenario, and defined the metrics of need-
iness and interruptibility in this space. We have divided this
problem into the subsets of systematic and reactive neediness,
and identified ways to link this definition to real world video
of restaurant interactions, as well as surmounting issues of a
weak reward signal and how to handle obfuscating distrac-
tions in this data. We plan to deploy several models on the
features we have curated from our real-world video streams
to attempt to predict future waiter actions, with the goal of be-
ing able use these models to inform planning and scheduling
for a robot waiter.
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