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Figure 1: A sample machine teaching sequence to explain a delivery robot’s decision-making to a human learner. The robot’s
reward function has three features - mud, step cost, and battery. The learner starts with a prior knowledge that step cost is
always negative and is shown demonstrations to learn the trade-offs between the features. Sometimes, the learner is provided
with intermittent diagnostic tests to evaluate how well they have learned from the demonstrations. A simulated learner can
sample a test response from the available distribution in machine teaching experiments for explainable decision-making.

ABSTRACT
Explainable reinforcement learning (XRL) aims to provide insights
into the decision-making process of reinforcement learning (RL)
agents, enabling humans to comprehend, trust, and collaborate with
them. However, providing effective human-centric explanations
requires collecting large amounts of human interaction data. In this
paper, we propose a Bayesian inverse reinforcement learning model
of “simulated learners” who infer the agent’s reward function from
demonstrations. We use a particle filter to represent and update
the learner’s beliefs based on the information conveyed by the
demonstrations. We also introduce the concept of understanding
factor, a parameter that captures the user’s ability to learn from
demonstrations and varies with feedback. We evaluate our learner
model using a simulated delivery robot task and compare it with
different teaching methods and learner types. We show that our
model can simulate realistic human learning behavior and closely
match the performance of actual human learners thus offering a
novel and flexible way to design and evaluate user-centric XRL
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systems that can enhance user comprehension and trust in RL
agents.
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1 INTRODUCTION
Reinforcement learning (RL) has shown promise in solving sequen-
tial decision-making tasks in various domains, but the opacity of
RL models can hinder their practical implementation [19, 27]. Ex-
plainable reinforcement learning (XRL) seeks to provide insights
into the decision-making process of RL agents, enabling humans to
comprehend their actions, intervene when necessary, and ensure
safety and reliability [8]. While explanations are a powerful way to
enhance the transparency of AI decision-making processes, tailor-
ing explanations to cater to the understanding, cognitive abilities,
domain knowledge, and preferences of users is critical for their
utility [11, 18].
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Explaining a machine’s decisions to human users resembles a
teaching-learning dynamic, with the XAI system playing the role
of the teacher and humans as the students [15, 23]. Thus incor-
porating insights from cognitive science to grasp human thought
processes and learning mechanisms is crucial for XAI developers to
create systems that are not only informative but also user-friendly
across diverse backgrounds and expertise levels. Constructing a
comprehensive learner model involves delving into various cogni-
tive aspects, such as analyzing performance, identifying miscon-
ceptions, and delineating goals and plans [23]. The learner model
serves as the foundation for instructional decisions, facilitating
understanding of user needs and enabling tailored adaptation [17].

While actual human learners undoubtedly offer valuable insights,
there is a growing interest in using simulated learners in XAI as it
provides several distinct advantages [4, 12, 24]. First, by leveraging
simulated learners as test subjects, researchers can systematically
assess the efficacy and user-friendliness of various explanation
methods and interfaces within AI systems in an iterative way. Sec-
ond, simulated learners enable the generation and testing of hy-
potheses regarding human learning processes–—a vital aspect of
advancing XAI understanding—with minimal actual human data
that are more difficult to collect. Through simulated experimenta-
tion, researchers can investigate how diverse factors such as prior
knowledge, motivation, and feedback influence human learning
outcomes and cognitive mechanisms.

In pedagogical literature, learners are frequently conceptualized
as Bayesian Learners, leveraging probabilistic frameworks to repre-
sent their learning processes [6, 7]. This approach allows for the
integration of prior knowledge with observed data to infer the
learner’s beliefs and update them accordingly. In explainable AI
applications, [10] and [21] have extended this concept by modeling
users as Bayesian Inverse Reinforcement Learners, aiming to elu-
cidate how humans perceive and interpret the decisions made by
AI systems. However, despite the theoretical advancements, there
remains a notable gap in the validation of these learner models
using empirical user data.

This work presents a simulated model of human learning specif-
ically tailored for the context of machine teaching for explainable
RL, adapted from [16]. Unlike [16], this model aims to simulate
learner behavior by adaptively updating the particle filter update
distribution based on the learning progress. Human learners are
modeled as Bayesian inverse reinforcement learners utilizing a par-
ticle filter framework to approximate inference regarding robot
reward weights. This approach not only offers a more accurate
representation of human perception and learning. The model’s ver-
satility is demonstrated through its performance across various
pedagogical explainability frameworks and its calibration with real
user data enhances its validity, paving the way for more effective
design and development of explainable AI systems.

2 BACKGROUND
MarkovDecision ProcessWemodel the environment as aMarkov
Decision Process (MDP), given by the tuple ⟨S,A,𝑇 , 𝑅,𝛾,S′⟩, rep-
resenting the state space, action space, transition function, reward
function, discount factor, and initial state distribution respectively.
An optimal trajectory 𝜉∗ is a sequence of (𝑠𝑖 , 𝑎, 𝑠′𝑖 ) tuples obtained

by following the robot’s optimal policy 𝜋∗. Similar to prior work [1],
𝑅 = w∗⊤𝜙 (𝑠, 𝑎, 𝑠′) is represented as a weighted linear combination
of reward features. We define a group of MDPs that share 𝑅,A,

and 𝛾 but differ in 𝑇𝑖 , S𝑖 , and 𝑆0𝑖 , as a domain. Sharing the same 𝑅
ensures that all demonstrations within the domain support infer-
ence over a common w∗. We use the MDP formulation to model an
item delivery task where a robot is tasked with delivering an item
through an environment that has rubble, blocked regions, and a
battery recharge station (see Fig.1 (b)).

Machine teaching for policies:We adapt themachine teaching
framework for policies [14] to select a set of demonstrations D of
size𝑛 thatmaximizes the similarity 𝜌 between optimal policy 𝜋∗ and
the policy 𝜋 recovered using a computational modelM (e.g., IRL) on
D, argmaxD⊂Ξ 𝜌 (𝜋 (D,M), 𝜋∗) s.t. |D| = 𝑛, where Ξ is the set
of all demonstrations of 𝜋∗ in a domain. Once w∗ is approximated
through IRL, this approach assumes that the learner can deduce 𝜋∗
by planning on the underlying MDP. Thus, the objective reduces
to selecting demonstrations that are informative in conveying w∗,
which can be measured using behavior equivalence classes.

Behavior equivalence class: The behavioral equivalence class
(BEC) of the optimal policy 𝜋∗ is the set of reward functions under
which 𝜋∗ is optimal. For a reward function that is a weighted linear
combination of features, the BEC of a demonstration (trajectory)
𝜉∗ of 𝜋∗ is the intersection of half-spaces [3] formed by the exact
IRL equation [20]

BEC(𝜉∗ |𝜋∗ ) := w⊤
(
𝜇
(𝑠,𝑎)
𝜋∗ − 𝜇

(𝑠,𝑏)
𝜋∗

)
≥ 0, ∀(𝑠, 𝑎) ∈ 𝜉∗, 𝑏 ∈ A. (1)

where 𝜇 (𝑠,𝑎)
𝜋∗ = E

[∑∞
𝑡=0 𝛾

𝑡𝜙 (𝑠𝑡 ) | 𝜋, 𝑠0 = 𝑠, 𝑎0 = 𝑎
]
is the vector of

reward feature counts accrued from taking action 𝑎 in 𝑠 , then fol-
lowing 𝜋∗ after. Any demonstration can be converted into a set of
constraints on w using (1), with each constraint being a knowledge
component/concept (KC) [13] that captures a facet of the reward
function (e.g., tradeoffs between the underlying reward features).
Consider the item delivery domain, which has binary reward fea-
tures 𝜙 = [traversed rubble, battery recharged, action taken]. In
practice, we require | |w∗ | |2 = 1 to bypass both the scale invari-
ance of IRL and the degenerate all-zero reward function. If no prior
knowledge is assumed, the potential belief space on reward weights
would uniformly span the surface of the 𝑛 − 1 sphere (𝑛 is the num-
ber of domain features) due to the 𝐿2 norm constraint on w∗. We
instead assume that learners begins with a prior that action weight
is negative (e.g. favoring shortest path, see Fig. 1 (a)).

3 PARTICLE FILTER LEARNER MODEL
Drawing inspiration from [24], we conceptualize the learner (user)
as a representation derived from the teacher’s (robot’s) model of
the learner proposed in [16].

3.1 Robot task and teaching framework
Consider that the robot’s task is to deliver items to an emergency
response team. The robot has limited maneuverability over rubble,
and limited range, and may prefer to recharge when possible. These
capabilities and preferences (i.e. its decision-making)must be taught
to the team quickly because of the time-sensitive situation.

We briefly discuss the teaching framework this model is evalu-
ated for. For more details, readers are encouraged to refer to [16].
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Figure 2: (a) The custom probability density function (pdf) for updating particle weights based on a constraint generated. The
probability mass on the uniform side is operationalized as the understanding factor of simulated learners. (b) Variation in
learning dynamics with understanding factor, 𝑢. The information gain ratio of the learner monotonically increases with 𝑢. (c)
All learners started with the same prior, i.e. step cost is negative. The particle filters are updated based on the custom pdfs for
each 𝑢. The distribution gets more and more concentrated with increasing 𝑢.

Using the pedagogical principle of scaffolding, the algorithm selects
individual knowledge components/concepts (KCs) that incremen-
tally increase in information across an increasing subset of features.
For example, the KCs could incrementally teach the bounds on the
cost of traveling through rubble given the step cost, followed by
bounds on the reward for recharging given the step cost, and then
trade-offs between these three. The demonstrations are selected
based on the KCs.

3.2 Operationalization of the learner model
We model learner belief about the robot’s reward weights using
a particle filter, adapting the modeling approach from [16] used
for the teacher’s model of the learner. Each particle represents a
potential belief about the robot’s reward function and the particle
weights are updated in a Bayesian manner based on constraints con-
veyed through demonstrations. The constraints correspond to the
knowledge gained from demonstrations. The particle filter update
for a demonstration is shown in Fig. 1.

We use a custom probability distribution, 𝑝 (𝑥𝑡 |𝑦𝑡 ), (refer Fig.
2(a)) to update particle weights after seeing a demonstration. This
distribution is a combination of a uniform distribution for the cor-
rect half-space of the constraint (indicating that any particle lying
in this space is equally valid for the demonstration) and a von
Mises-Fisher distribution for the incorrect half-space (indicating
that particles farther away from the constraint are exponentially
less likely to have generated the demonstration).

Learning from examples depends on the analogical reasoning
ability of individuals [5, 25]. Analogical reasoning is a cognitive
process where individuals use analogies, or comparisons between
different objects, concepts, or situations, to understand or solve
problems. It involves recognizing similarities between two or more

things that may be superficially different but share underlying
commonalities. For machine teaching of robot policy, this involves
observing patterns of robot behaviors in some situations and gen-
eralizing them to similar situations [3, 15].

We parametrize this ability to understand from demonstrations
as the understanding factor, 𝑢. It is a measure of how much users
can understand the underlying constraints from the demonstrations
seen and is defined as the probability mass on the uniform (correct)
side of the custom distribution of the underlying constraint (see
Fig. 2(a)). Its effect is that of a modifying factor on the information
gain in the demonstration that is translated to the information gain
of the particle filter, 𝐼𝐺𝑝𝑓 = 𝑓 (𝑢, 𝐼𝐺𝑑𝑒𝑚𝑜 ).

A higher understanding factor implies that learners assign more
weights to particles on the correct side of the constraints. Fig. 2
shows the change in distribution after seeing the same demonstra-
tion for various understanding factors and the associated informa-
tion gain ratio. We calculate information gain ratio as the change in
entropy of the particles before and after seeing the demonstration
to the entropy change when the understanding factor is ’1’.

4 LEARNER MODEL PERFORMANCE
4.1 User Study
As proposed in [16], the authors conducted an online user study to
evaluate the effects of different teaching frameworks - open loop
and closed loop. Open loop consisted of only a series of demon-
strations for various KCs of increasing difficulty and a set of final
tests to evaluate their understanding of the robot’s reward. Closed
loop additionally provided diagnostic tests for each KC to test the
learner’s knowledge of a KC intermittently. The algorithm provides
feedback on whether the learners got the diagnostic tests right or
wrong and also provides remedial demonstrations and tests when
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Learning dynamics for user 147, low learner. Open loop condition
Learning dynamics for user 108, low learner. Open loop condition

Learning dynamics for user 30, low learner. Closed loop condition
Learning dynamics for user 5, high learner. Closed loop condition

Interaction number

𝑢0 = 0.8, 𝛿𝑢𝑐=0.035, 𝛿𝑢𝑖=0.07 
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Figure 3: Learner model simulated for specific user trials. The parameters of initial understanding factor 𝑢0 and change in
understanding factor, 𝛿 𝑢𝑖 , and 𝛿 𝑢𝑐 were tuned to get the prob. robot reward knowledge close to the final test performance that
six tests in total. By tuning these understanding factor parameters, we can get diverse learning behaviors of low and high
learners and also able to handle various teaching paradigms, i.e. open loop without feedback and closed loop with feedback.

the learners got the intermittent diagnostic tests wrong until the
learner demonstrates concept mastery. These teaching frameworks
are inspired by the pedagogical principles of providing teacher
feedback [2, 26] and testing effect [22].

4.2 Model performance comparison to real
learner behavior

We evaluate our learner model in two dimensions — type of learner,
and teaching framework. Learners have different cognitive capa-
bilities and understand at different levels the same information
provided. Furthermore, the teaching process is likely to be an adap-
tive and varied process, catered to the specific learner. Thus our
model of the learner should be able to encompass a wide variety of
learner abilities in different dynamic teaching contexts.

We evaluate how our learner model can be utilized to model
various observed human learning behaviors in the user study data
for different teaching frameworks and different learning abilities.
We operationalize the understanding factor, 𝑢 = 𝑢0, as the individ-
ual’s ability to learn from demonstrations. Pedagogical literature
suggests that people get better at learning a concept when they
get feedback and are repeatedly exposed to the concept [9, 26]. So,
to incorporate the effect of feedback, we define the understanding
factor for teaching frameworks that receive feedback as,

𝑢𝑡 = 𝑢𝑡−1 + Δ𝑢𝑡−1, where

Δ𝑢𝑡−1 =

{
𝛿𝑢𝑐 if test is correct at time 𝑡 − 1
𝛿𝑢𝑖 if test is incorrect at time 𝑡 − 1

(2)

𝑢𝑡 resets to 𝑢0, which is the base ability of the learner to learn
from demonstrations for each new concept as we assume the con-
cepts to be independent. Thus the improvement in𝑢 due to feedback
is contained within the specific concept / KC.

Fig. 3 shows simulations of learner behavior for various cat-
egories of learners and different teaching frameworks. We eval-
uate the measure, probability of robot reward knowledge as the
sum of weights of particles within the correct BEC area of the ro-
bot reward. The parameter values of 𝑢, 𝛿 𝑢𝑐 , &𝛿 𝑢𝑖 were manually
tuned to match the observed performance. By carefully choosing
the parameters, the learner models can simulate close to the ob-
served performance of actual human learners while seeing the same
demonstrations and feedback. This demonstrates the model’s ap-
plicability not only to model different types of learners but also
for various teaching frameworks with different learning dynamics.
Further, as seen in the top right of Fig. 3, the learner is also to
capture complicated learning behaviors that had trouble learning
the first concept but performed very well after that.

5 CONCLUSION
In this work, we explore a Bayesian Inverse Reinforcement Learner
model that can simulate realistic human learning behavior for
machine teaching experiments. We were able to show that the
simulated learning behavior based on the proposed model closely
matches the observed final performance of actual human learners
for several types of learners and teaching frameworks and is even
able to model complex learning dynamics. With the availability of
actual data, the model can be used to identify the distribution of
the understanding factor parameters that best capture the learning
dynamics of each type of learner under different teaching contexts.
These in turn can be used to sample the simulated learners for var-
ious explainability experiments and using actual human learners
for fine-tuning, drastically reducing the requirements for actual
human data.
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