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Abstract

Humans naturally communicate their decision-making
through demonstrations, and infer others’ decision-making
through reasoning that resembles inverse reinforcement
learning (IRL). Though robots may also convey their
decision-making to humans through demonstrations, standard
IRL misrepresents human inference, often yielding ineffec-
tive demonstrations. Critically, the counterfactuals consid-
ered by standard IRL often do not match those considered
by humans, and can misjudge a demonstration’s informative-
ness to humans. This paper thus aims to more effectively con-
vey robot policies to humans by maintaining a more accu-
rate model of human knowledge throughout the demonstra-
tion process. We present a novel approach for evaluating a
demonstration’s informativeness via counterfactuals likely to
be considered by humans based on their current expectations
of the robot’s policy. In addition, we investigate how scaffold-
ing the number of features conveyed via demonstrations can
improve informativeness. Finally, we show how to evaluate
the expected difficulty for a human to predict an instance of a
robot’s behavior based on their belief of the robot’s decision-
making. We conclude by proposing an experiment that will
evaluate the aforementioned methods.

Introduction
Our capacity to deploy and co-exist fluently with robots is
contingent in part on our ability to understand their decision-
making. An engineer certifying the navigation policy of a
ground delivery robot may ask, “Does it have a calibrated
understanding of the terrain types it should risk traversing
as it balances efficiency and safety?” Moreover, new owners
of an autonomous vacuum gauging how much of their floor
to keep clear may wonder, “How much clutter will the robot
tolerate in an area before it steers clear to ensure it does not
get stuck?”

One important way that people communicate, compre-
hend, and evaluate each others’ decision-making is through
demonstrations. Cognitive science suggests that humans of-
ten model one another’s behavior as exactly or approx-
imately maximizing a reward function (Jern, Lucas, and
Kemp 2017; Jara-Ettinger et al. 2016; Lucas et al. 2014),
which they can infer through reasoning resembling inverse
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reinforcement learning (IRL) (Ng and Russell 2000; Jara-
Ettinger 2019; Baker, Saxe, and Tenenbaum 2009, 2011).
Once they know a reward function, humans are often able
to deduce a behavior that (approximately) maximizes it
through planning (Shteingart and Loewenstein 2014; Wun-
derlich, Dayan, and Dolan 2012). Thus we can often expect
humans to be able to understand one another’s decision-
making through IRL and behavior through planning, linked
by the reward function1 underlying demonstrations. And
though a robot could convey its reward function directly, a
study by Sukkerd, Simmons, and Garlan suggests that hu-
mans better understand the corresponding policy if demon-
strations accompany the communicated reward functions,
further motivating our use of demonstrations.

Importantly, the informativeness of a demonstration can
be quantified by how much information it reveals regard-
ing the reward function. For IRL, the information inherently
depends on the counterfactuals (i.e. alternative, suboptimal
demonstrations) that are considered. Picture an agent in a
delivery domain whose objective is to bring the package to
the destination, and its reward is determined by how much
mud it traverses and its total number of actions (i.e. steps).
To convey its reward function, imagine the agent provides
a human with the demonstration in Fig. 1a. Intuitively, be-
cause the agent takes a two-action detour to avoid the mud
instead of going through it (a natural counterfactual), the hu-
man knows that the agent associates a negative reward with
going through mud.

After providing this first demonstration, the agent consid-
ers what to demonstrate next to convey more information
regarding its reward function. Given the first demonstration,
a human knows mud is costly, but doesn’t know how costly.
For instance, what should the agent do if detouring around
the mud takes four actions, as in Fig. 1c? In our example,
suppose the ratio of mud to action reward is -3 to -1 for the
agent; consequently, the agent should simply go through the
mud in Fig. 1c to maximize its reward. Intuitively, this would
be a very informative demonstration for the human to see,
as it upper-bounds the cost of the mud by contrasting the
agent’s direct path against a suboptimal human counterfac-

1Ng and Russell (2000) suggest that “the reward function,
rather than the policy, is the most succinct, robust, and transferable
definition of the task.”



Figure 1: (a) An agent’s optimal demonstration is shown in
contrast to a suboptimal counterfactual alternative. (b) In-
verse reinforcement learning constrains the possible reward
functions underlying the agent’s demonstration by compar-
ing against the counterfactuals in (a). (c) An agent’s opti-
mal demonstration is shown in contrast to a counterfactual
likely considered by a human who has seen the demonstra-
tion in (a). (d) Sample counterfactual alternatives considered
by standard IRL, which are generated by incrementally de-
viating by one action (pink) along the agent’s path, then fol-
lowing the agent’s optimal policy afterward (blue). Note that
neither matches the human’s counterfactual.

tual that detours heavily.
Standard IRL (Ng and Russell 2000), however, does not

model the learner’s beliefs and fails to consider this detour-
ing human counterfactual. Instead, standard IRL (we will
henceforth simply refer to this method as IRL for the sake of
brevity) enumerates possible counterfactual trajectories by
considering all others actions that could have been taken at
each step in the optimal trajectory (described in greater de-
tail in the Counterfactual Scaffolding section). Two sample
IRL counterfactuals to the agent’s trajectory in Fig. 1c are
shown in Fig. 1d, but neither matches the intuitive human
counterfactual of completely detouring around the mud. Not
only is IRL unable to consider the human counterfactual, a
human is unlikely to follow IRL’s step-wise method of enu-
merating many counterfactuals. As a result, IRL has the po-
tential to both undershoot or overshoot the informativeness
of a demonstration to a human by incorrectly considering the
wrong counterfactuals or considering too many counterfac-
tuals, respectively. Though IRL is a principled formalism for
extracting reward information from demonstrations, it must
be adapted before being used to model human learning.

This work thus aims to more effectively convey robot
policies to humans by maintaining a more accurate model
of human knowledge throughout the demonstration process.
First, we evaluate the informativeness of demonstrations

based on counterfactual trajectories likely to be considered
by the human rather than those generated via one-action de-
viations as in standard IRL. Second, we improve scaffolding
demonstrations by incrementally increasing the number of
unique features (e.g. the delivery domain not only has mud,
but also a spare battery) that are conveyed. And finally, we
condition the expected difficulty of a human to predict an
agent’s behavior during testing on the human’s current be-
liefs of the agent’s reward.

Related Work
Policy Summarization & Machine Teaching
The problem of policy summarization considers which states
and actions should be conveyed to help a user obtain a global
understanding of a robot’s policy (Amir, Doshi-Velez, and
Sarne 2019). There are two primary approaches to this prob-
lem. The first relies on heuristics to evaluate the value of
communicating certain states and actions, such as entropy
(Huang et al. 2018), differences in Q-values (Amir and Amir
2018), and differences between the policies of two agents
(Amitai and Amir 2021).

We build on the second approach, which follows the ma-
chine teaching paradigm (Zhu et al. 2018). Given an as-
sumed learning model of the student (e.g. IRL), the machine
teaching objective is to select the minimal set of teaching
examples (i.e. demonstrations) that will help the learner ar-
rive at a specific target model (e.g. a policy). Though ma-
chine teaching was first applied to classification and regres-
sion (Zhu 2015; Liu and Zhu 2016), it has also recently
been employed to convey reward functions from which the
corresponding policy can be reconstructed. Sanneman and
Shah (2021) provide a survey of such methods for explaining
agent reward function to humans. The related works in this
section, including our own, fall under their categorization of
policy space techniques that convey information regarding
the reward function using demonstrations of the agent’s pol-
icy. We summarize a few relevant works below.

Huang et al. (2019) selected informative demonstrations
for humans modeled to employ approximate Bayesian IRL
for recovering the reward function. This technique requires
the true reward function to be within a candidate set of re-
ward functions over which to perform Bayesian inference,
and computation scales linearly with the size of the set.
Cakmak and Lopes (2012) instead focused on IRL learn-
ers and selected demonstrations that maximally reduced un-
certainty over all viable reward parameters, posed as a vol-
ume removal problem. Brown and Niekum (2019) improved
this method (particularly for high dimensions) by solving an
equivalent set cover problem instead with their Set Cover
Optimal Teaching (SCOT) algorithm. Also assuming that
humans sometimes employ IRL-like reasoning to under-
stand others’ policies, Lage et al. (2019) used SCOT to select
demonstrations to show to a human learner. However, SCOT
is not explicitly designed for human learners and so our prior
work (Lee, Admoni, and Simmons 2021) built on SCOT by
incorporating human learning techniques and concepts such
as scaffolding, simplicity, and similarity. Noting that humans
are not pure IRL learners that can fully grasp a few highly



informative but nuanced examples, we sought to scaffold
demonstrations of increasing informativeness and difficulty
to ease the learning. However, our initial method of scaffold-
ing via IRL did not yield significant learning gains, which
we aim to improve in this work by incorporating counterfac-
tuals that are based on the human’s expected knowledge.

Techniques for Human Teaching
We take inspiration from cognitive science in informing how
a robot may teach and convey their decision-making to a
human learner so that the learner may correctly predict the
robot’s behavior in new situations.

Scaffolding: Scaffolding is a well-established pedagogi-
cal technique in which a teacher assists a learner in accom-
plishing a task currently beyond the learner’s abilities, e.g.
by reducing the degrees of freedom of the problem and/or
by demonstrating partial solutions (Wood, Bruner, and Ross
1976). We implement this by showing demonstrations that
convey information on an increasing number of unique re-
ward features. Following Reiser (2004)’s recommendation
for software-based scaffolding to reduce the complexity of
the learning problem through additional structure, we also
provide demonstrations that sequentially increase in both in-
formativeness and difficulty (as determined by counterfac-
tual trajectories that likely mirror the human’s beliefs).

Counterfactuals: In surveying the literature on how hu-
mans explain to each other, Miller (2019) notes that “ex-
planations are constrastive – they are sought in response to
particular counterfactual cases.” Miller also notes that ex-
planations are contextual and that it is important that the ex-
plainee is cognizant of the counterfactual intended by the
explainer. Demonstrations likewise must be tailored to the
learner given their current knowledge and the counterfactu-
als that the learner will probably consider.

Furthermore, Reiser (2004) suggests that scaffolding
should not only provide structure that reduces problem com-
plexity but at times induce cognitive conflict to challenge
and engage the learner. As noted previously, the information
provided by a demonstration is contingent on the counterfac-
tual alternatives that are considered. It is subsequently im-
portant to ensure that the agent’s demonstration differs from
the counterfactuals likely to be considered by the human to
provide information.

Testing: Effective scaffolding requires an accurate diag-
nosis of the learner’s current abilities to provide the appro-
priate level of assistance throughout the teaching process
(Collins, Brown, and Newman 1988). A common diagnostic
method is presenting the learner with tests of varying diffi-
culties and assessing their understanding. Our tests consist
of presenting humans with unseen instances of a domain,
then asking them to demonstrate the agent’s optimal behav-
ior (akin to the “best demonstration” or “simulation” reward
understanding assessment (Sanneman and Shah 2021; Lage
et al. 2018)). In our prior work (Lee, Admoni, and Simmons
2021), we showed a demonstration’s expected informative-
ness (determined by IRL) could simply be inverted into a
measure of the expected difficulty of a human to predict that

exact demonstration during testing. In this work, we propose
to update the difficulty measure by explicitly accounting for
and conditioning on the learner’s current knowledge.

Technical background
Much of the technical background is shared with our prior
work (Lee, Admoni, and Simmons 2021) and is repeated be-
low for completeness.

Markov decision process: The agent models its world as
an instance (indexed by i) of a deterministic2 Markov deci-
sion process, MDPi := (Si,A, Ti, R, γ, S0

i ), where Si and
A denote the state and action sets, Ti : Si × A → Si the
transition function, R : S × A → R the reward function,
γ ∈ [0, 1] the discount factor, and S0

i the initial state distri-
bution, and S :

⋃
i Si the union over the states of all related

instances of MDPs, which we call a domain (to be described
in the following paragraphs).

The robot has an optimal policy π∗
i : Si → A that maps

each state in an MDP to the action that will optimize the
reward in an infinite horizon. A sequence of (si, a, s

′
i) tu-

ples obtained by following π∗ gives rise to an optimal tra-
jectory (i.e. a demonstration) ξ∗, where si, s

′
i ∈ Si, a ∈ A.

We assume that R can be expressed as a weighted linear
combination of l reward features3 ϕ : S × A → Rl, i.e.
R = w∗⊤ϕ(s, a, s′) (Abbeel and Ng 2004). We also assume
that the human is aware of all aspects of an MDP apart from
the weights w∗.

Let a domain refer to a collection of related MDPs that
share A, R, γ but differ in Si, Ti and S0

i . Take for exam-
ple the delivery domain. Though MDPs in this domain may
vary in the number and locations of mud patches and sub-
sequently offer a diverse set of demonstrations (e.g. Fig. 1a
and 1c), they importantly share the same reward function R.

Because instances of a domain share R, the various
demonstrations all support inference over the same w∗

through IRL. Thus, we overload the notation π∗ to refer
to any policy of a domain instance that optimizes a reward
with w∗. Furthermore, while a demonstration strictly con-
sists of both an optimal trajectory ξ∗ (obtained by following
π∗) and the corresponding MDP (minus w∗), we will refer
to a demonstration only by ξ∗ in this work for notational
simplicity.

Having represented the agent’s world and policy, we now
define the problem of generating demonstrations for teach-
ing that policy through the lens of machine teaching.

Machine teaching for policies: As formalized by Lage
et al. (2019), machine teaching for policies seeks to convey a
set of demonstrations D of size n (i.e. the allotted budget for
the teaching set) that will maximize the similarity ρ between
π∗ and the policy π̂ recovered using a model M on D

argmax
D⊂Ξ

ρ(π̂(D,M), π∗) s.t. |D| = n (1)

2Though we assume a deterministic MDP, methods described
here naturally generalize to MDPs with stochastic transition func-
tions and policies.

3This assumption can be made without loss of generality as the
reward features can be nonlinear with respect to states and actions
and be arbitrarily complex.



where Ξ is the set of all optimal demonstrations of π∗ in a
domain. We assume that the human is aware of the reward
features and employs IRL (Ng and Russell 2000) as their
model M for approximating the w∗ underlying demonstra-
tions. Once w∗ (and the subsequent reward function) is ap-
proximated, we assume that human learners are able to ar-
rive at π∗ through planning on the underlying MDP.

Thus, the teaching objective reduces to effectively con-
veying w∗ through well-selected demonstrations4. In order
to quantify the information a demonstration provides on w∗,
we leverage the idea of behavior equivalence classes.

Behavior equivalence class: The behavior equivalence
class (BEC) of π is the region of (viable) reward weights un-
der which π is still optimal. The larger the area of BEC(π)
is, the greater the potential uncertainty over w∗ that is un-
derlying the robot’s optimal policy.

BEC(π) =
{
w ∈ Rl | π optimal w.r.t. R = w⊤ϕ(s, a, s′)

}
(2)

The BEC(π) can be approximated as the intersection of the
following half-space constraints generated by the central
IRL equation (Ng and Russell 2000; Abbeel and Ng 2004)

w⊤
(
µ(s,a)
π − µ(s,b)

π

)
≥ 0

∀a ∈ argmax
a′∈A

Q∗ (s, a′) , b ∈ A, s ∈ S
(3)

where µ
(s,a)
π = [

∑∞
t=0 γ

tϕ (st) | π, s0 = s, a0 = a] is the
vector of reward feature counts accrued from taking the op-
timal action a in s, then following π after, and Q∗(s, a)
refers to the optimal Q-value in a state and a possible ac-
tion (Watkins and Dayan 1992).

Brown and Niekum (2019) proved that the BEC(D|π) of
a set of demonstrations D of a policy π can be formulated
similarly as the intersection of the following half-spaces

w⊤
(
µ(s,a)
π − µ(s,b)

π

)
≥ 0,∀(s, a) ∈ D, b ∈ A. (4)

Using Eq. 4, every demonstration can be translated into a set
of constraints on the viable reward weights.

We make two observations. First, Eq. 3 and Eq. 4 cap-
ture the key idea that IRL depends not only on the agent’s
optimal trajectory but also on the suboptimal counterfac-
tual trajectories that are considered, represented by µ

(s,a)
π

and µ
(s,b)
π respectively. Second, assuming that the human

has been shown the set of demonstrations D, BEC(D|π)
could subsequently be used to model the human’s belief over
the agent’s possible reward weights. We will later build on
this concept when incorporating a human model to select
demonstrations that account for human counterfactuals.

Consider an example in the delivery domain with A =
{up, down, left, right, pick up, drop}, binary reward fea-
tures ϕ = [traversed mud, picked up battery, action taken],

4In principle, a robot could simply convey w∗ explicitly to a
human. However, it can be nontrivial for humans to map precise
numerical reward weights to the corresponding optimal behavior
through planning, especially if there is large number of reward fea-
tures. Thus, providing demonstrations that inherently carry infor-
mation regarding w∗ and directly conveying the optimal behavior
can be more a effective teaching method for human learners.

w∗ ∝ [−3, 3.5,−1]. In practice, we require that ||w||2 = 1
to circumvent the scaling invariance of IRL solutions and
to eliminate the degenerate all-zero reward function (Brown
and Niekum 2018). The space of models in the human’s
mind without information is the n − 1 sphere due to the
L2 norm constraint on w, where n is the number of do-
main features. The demonstration in Fig. 1a corresponds to
the constraints in Fig. 1b, which has cut away regions of
the 2-sphere and has left only the sliver which contains the
agent’s true reward weights. The constraints on viable re-
ward weights intuitively indicate that w∗

2 < 0 (conveyed
by the red halfspace constraint in Fig. 1b) since no unnec-
essary actions were taken in delivering the package, and
w∗

0 < 0 and w∗
0 < 2w∗

2 since two actions were taken to
detour around the mud (conveyed by the red and blue con-
straints jointly). Importantly, the size of the n − 1 sphere
that remains after considering the constraints generated by a
demonstration can be used as a measure of its informative-
ness. The smaller the area, the fewer viable reward weights
remain, and the more informative the demonstration.

Proposed Techniques for Teaching Humans
Counterfactual Scaffolding
As conveyed in the introduction and Fig. 1, a demonstra-
tion’s ability to reveal the underlying reward function via
IRL critically hinges on the counterfactuals considered.

Many counterfactual alternatives proposed by IRL can
seem nonsensical to humans due to the rote process used to
generate them. As expressed by Eq. 4, IRL generates coun-
terfactuals by taking the agent’s optimal trajectory and at
each state s, taking a potentially suboptimal action b then
following the optimal policy afterward. This process gen-
erates the two sample counterfactuals that are seen in Fig.
1d, which importantly do not correspond to human coun-
terfactual in Fig. 1c. While such one-action deviations from
the optimal trajectory are computationally sensible and of-
ten efficient5, these are unlikely to be the counterfactuals on
the human’s mind for a number of reasons.

First, humans are likely unlikely to methodically go
through each state of the agent’s trajectory and consider all
possible alternative actions. Instead, humans naturally in-
cline toward a few causes and a few counterfactuals out of
many potential ones for explanation (Miller 2019). This can
lead IRL to oversell the informativeness if more counterfac-
tuals than ones in the human’s mind are considered. Sec-
ond, the counterfactuals that IRL considers are generated by
“perturbing” the demonstration directly (by taking a single
suboptimal action, then following the optimal policy hence-
forth) and may not be consistent with any reward function
(e.g. no reward function considered in the delivery domain
would first avoid the mud, then later go through the mud

5One could consider n-action deviations for trajectory ξ where
n can be an integer greater than one and the length of the trajec-
tory is |ξ|. However, this results in an exponential branching factor
where the number of counterfactual trajectories grows by |ξ|×An,
many of which yield redundant constraints that are looser than
those generated by one-action deviation.



as one of the counterfactuals in Fig. 1d does). Instead, hu-
mans may consider a reward function that is different than
the agent’s, but their counterfactuals are likely to be consis-
tent with that “perturbed” reward function (e.g. avoiding the
mud both ways as in Fig. 1c). This can cause IRL to also
undersell the informativeness of a demonstration if the hu-
man’s counterfactual alternatives are not considered.

In selecting effective explanations, we posit that you must
not only consider the learner’s learning model (i.e. IRL) but
also their prior knowledge and subsequently what counter-
factuals they would consider. We thus extend our prior work
(Lee, Admoni, and Simmons 2021) to evaluate a demon-
stration’s informativeness based on counterfactuals gener-
ated via potential reward functions on the human’s mind as
opposed to counterfactuals generated via one-action devia-
tions, and scaffold by showing demonstrations of increasing
informativeness.

To incorporate a human model and account for human
counterfactuals when evaluating the informativeness of po-
tential demonstrations, do the following. First instantiate a
prior model of the human’s beliefs over the agent’s reward
weights w∗, B(w∗). This model could be the full n − 1
sphere if the human has no prior knowledge, or it may be
a partial sphere due to prior knowledge and corresponding
constraints (e.g. that action reward is negative). Then sample
m weights from B(w∗), e.g. using the Gon algorithm (Gon-
zalez 1985) to ensure that weights are evenly distributed.
Each weight represents a particular belief that the human
could have over the agent’s reward function. For every pos-
sible demonstration in a domain6 by the agent, and for each
of the m weights, simulate what the “human” counterfactual
to each demonstration would be if the human had this weight
(and subsequent reward function) in mind and generate the
corresponding constraints using Eq. 47. For each possible
demonstration by the agent, consolidate the corresponding
m possible human counterfactuals by taking a union of all
corresponding constraints. Finally, select the demonstration
that maximizes information gain, i.e. select the demonstra-
tion that maximizes the difference between B(w∗) before
and after the human sees this demonstration. Once you have
shown the selected demo and updated B(w∗), you may se-
lect the next demonstration to show by sampling m weights
from the updated B(w∗) and repeating the steps above.

Feature Scaffolding
In one of the first papers on scaffolding, Wood, Bruner, and
Ross (1976) note that one can scaffold by reducing the de-
grees of freedom of the problem. One natural way to imple-
ment this is to selectively show demonstrations in which the
number of reward features ϕ over which information is con-
veyed is limited. In the delivery domain for example, one

6As we work in relatively small gridworld domains with hun-
dreds of states, the possible demonstration set can simply be col-
lected by rolling out the agent’s policy from each possible state.
For larger or continuous state spaces, a more sophisticated method
for obtaining the set of possible demonstrations may be needed.

7Amongst equally rewarding counterfactuals, we give the “hu-
man” the benefit of the doubt by selecting the counterfactuals the
maximizes the agent’s true reward.

could show demonstrations that convey information on the
mud and action weights first, then on the battery and ac-
tion weights, then on the mud, battery, and action weights to
show potentially nuanced tradeoffs. Note that because solu-
tions of IRL are scale invariant (i.e. weights w and 2w will
yield the same behavior) we must show at least two features
at a time such that information on reward weights are con-
veyed relative to one another (e.g. how many actions are you
willing to take to avoid mud?). Any feature over which infor-
mation should not be conveyed can be considered as being
“masked”. Though we only propose a method for scaffold-
ing three features in this work, you could extend this method
to an arbitrary number of k features by showing demonstra-
tions that iteratively mask k − 2, k − 3, ..., 0 features and
showing combinations of two, three, ..., all features respec-
tively. We leave a more principled scheme for scaffolding a
higher number of features for future work.

To employ feature scaffolding for three features, first de-
termine the order in which you will mask the features. For
all of the demonstrations that the agent could show in a do-
main, obtain all possible constraints that could be generated
using Eq. 4. The order of the masking will be from the fea-
ture that has the least number of nonzero entries across all
of the constraints to the feature that has the largest number
of nonzero entries (a sample constraint generated by Eq. 4
could be [2, 0, -5] in which the first and third features have
nonzero entries). A feature with a high number of nonzero
entries (e.g. action reward) often serves as a good reference
feature that also allows for fine-grained comparisons, and
are thus masked last. Once the masking order has been de-
cided, remove any demonstrations that convey information
about the first masked feature from consideration (i.e. any
demonstrations that conveys constraints in which the fea-
ture count for a masked feature is nonzero). From this re-
duced set of demonstration, run counterfactual scaffolding
as described in the previous subsection until there are no
more demonstrations that can provide additional informa-
tion gain. Then remove any demonstrations that convey in-
formation about the second masked feature and run counter-
factual scaffolding until there are no more demonstrations
that can provide additional information gain. Repeat for the
third masked feature. Finally, consider all possible demon-
strations in the domain and run counterfactual scaffolding
until there are no more demonstrations that can provide ad-
ditional information gain.

Testing
The size of a demonstration’s BEC area intuitively captures
its informativeness during teaching; the smaller the area, the
less uncertainty there is regarding the value of w∗. In our
prior work (Lee, Admoni, and Simmons 2021), we showed
that the BEC area can also be inverted as a measure of a
trajectory’s difficulty as a question during testing, i.e. when
a human is asked to predict the robot’s trajectory in a new
situation.

However, the learner’s current knowledge also likely
plays a role. We hypothesize that the overlap in area be-
tween BEC(ξ|π∗) and B(w∗) better captures the difficulty
of a demonstration ξ as test for a human, for this overlap in-



Figure 2: There are many reward weights BEC(ξ|π∗) (yel-
low) that will generate the optimal demonstration ξ, indi-
cated by the half-sphere. However, only a portion of it over-
laps with the reward weights currently on the human’s mind
B(w∗) (green), making demonstration ξ likely difficult for
the human to correctly predict it during testing.

tuitively represents the percentage of current models in the
human’s mind that would generate the correct behavior. As
seen in Fig. 2, a demonstration may have an intrinsically
large BEC area but the human’s current knowledge may not
overlap much.

To estimate the expected difficulty of each demonstra-
tion ξ that could be shown in a domain, first obtain the
BEC(ξ|π∗) using Eq. 4. Noting that one-action deviation
does not always consider all reasonable counterfactual tra-
jectories, we combine constraints that define BEC(ξ|π∗) and
constraints obtained from human counterfactual trajectories
generated using m models sampled from B(w∗). These
combined constraints for each demonstration will give a bet-
ter estimate of the set of all weights that yield the correct
demonstration, denoted by BEC′(ξ|π∗)8. Finally, to measure
the difficulty of a demonstration ξ as a test for this human,
simply take the overlap between B(w∗) and BEC′(ξ|π∗) as
an estimate of how many weights in B(w∗) would produce
the correct demonstration. The smaller the overlap, the fewer
of the reward functions in the human’s mind will generate
the correct demonstration and harder the test.

Proposed experiment
We plan on running an online user study that involves partic-
ipants watching demonstrations of a 2D agent’s policy and
predicting the optimal trajectory in new test environments.
The study will evaluate the following hypotheses.

8Our intuition is that in theory, the best estimate of BEC′(ξ|π∗)
would naively require considering every single possible suboptimal
demonstration (e.g. obtain via one-, two-, three-action deviations
and so on) but the branching factor quickly becomes unmanage-
able.

H1: The overlap between the human’s belief over the
agent’s weights B(w∗) and the BEC area of a demonstra-
tion BEC′(ξ|π∗) correlates 1) inversely to the expected dif-
ficulty for a human to correctly predict it during testing, and
2) directly to their confidence in that prediction.

H2: Using counterfactual scaffolding in selecting training
demonstration will result in higher perceived informative-
ness of training demonstrations and better participant test
performance over the baseline scaffolding proposed by Lee,
Admoni, and Simmons (2021).

H3: Using feature scaffolding in selecting training
demonstration will result in lower mental effort during train-
ing and better participant test performance over no feature
scaffolding.

H4: Using counterfactual scaffolding and feature scaf-
folding will result in the highest perceived informativeness
of training demonstrations, lowest mental effort, and best
participant test performance compared to the other possible
conditions.

Three simple gridworld domains will be used for this
study, with each domain consisting of one shared reward
feature of action, and two unique reward features as follows.
The humans are explicitly told the features, but must infer
the respective reward weights by watching demonstrations.

Delivery domain. The agent is rewarded for bringing a
package to the destination, penalized for moving into mud,
and rewarded for collecting spare battery.

Colored tiles domain. The agent penalized differently for
traversing the two differently colored tiles throughout the
environment.

Skateboard domain. The agent is penalized less per ac-
tion if it has either picked up a skateboard (i.e. riding a skate-
board is less costly than walking) or is traversing through a
designated path.

The user study will explore whether demonstrations se-
lected using counterfactual and feature scaffolding improves
a human’s understanding of agent’s reward function and pol-
icy. The between-subjects variables will be counterfactual
scaffolding (yes and no), and feature scaffolding (yes and
no). There will be two within-subject variables: domain (de-
livery, colored tiles, and skateboard) and test difficulty (low,
medium, and high, determined by the aforementioned over-
lap between B(w∗) and BEC′(ξ|π∗)).

Finally, the following objective and subjective measures
will be recorded to evaluate the aforementioned hypotheses.
M1. Optimal response: For each test, whether the partici-
pant’s trajectory received the optimal reward/score or not.
M2. Informativeness rating: 5-point Likert scale with
prompt “How informative were these demonstrations in un-
derstanding how to score well in this game?”
M3. Mental effort rating: 5-point Likert scale with prompt
“How much mental effort was required to process why these
demonstrations were optimal?”
M4. Confidence rating: 5-point Likert scale with prompt
“How confident are you that you obtained the optimal
score?”
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