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Abstract—Autonomous manipulation has the potential to im-
prove the quality of life of many by assisting in routine household
tasks such as cooking, cleaning, and organizing. However, for
safe, dependable, and effective operation alongside humans, both
the robot and the human must have an accurate and reliable
assessment of the robot’s proficiency at completing the relevant
tasks. Such an assessment helps to ensure that the robot does
not engage in tasks that it cannot handle and instead engages
in tasks that are well-aligned with the robot’s abilities. This
proposal thus investigates how a robot can actively assess both
its proficiency and its confidence in that assessment through
appropriate measures of uncertainty that can be efficiently and
effectively communicated to a human. The experiments examine
how a user’s trust and subsequent use of a robot vary as a result
of the robot’s self-assessment of proficiency.

Index Terms—Trust Alignment; Proficiency; Confidence; Un-
certainty; Introspection

I. INTRODUCTION

Due to the high dimensionality of manipulators and the diffi-
culty of modeling contact physics, learning has thus emerged
as a major paradigm for robotic manipulation. While much
of the recent literature has focused on attaining a variety of
skills such as pushing [1], scooping [2], and pouring [3],
accurate and reliable characterization of the robot’s resulting
proficiency across a variety of environments is necessary
before robots transition out of controlled laboratories into
everyday environments such as homes.

In this proposal we aim to answer the following question:
Given a pretrained manipulation policy, how should a robot
assess its proficiency across a range of environmental condi-
tions to develop a shared understanding with a human? The
proposed research is guided by the following three principles:

1) Uncertainty is pervasive in robotics due to noisy sensors
and actuators, approximate models, and incomplete informa-
tion. For informed decision making, it is important to not only
estimate the quantity of uncertainty but to also understand the
constituent types and causes. The first thrust will thus aim to
both identify and quantify the uncertainties associated with the
estimated proficiency for a given task.

2) A calibrated understanding of the robot’s proficiency is
critical to effective collaboration between a human and a robot.
If the human under-trusts the robot, he or she may fail to fully
utilize all of the robot’s capabilities. On the other extreme, the
human may over-trust the robot, which may lead to unrealistic
expectations and potentially dangerous consequences [4, 5].
The second thrust will thus actively learn and convey the

Fig. 1. An accurate assessment of a robot’s proficiency is critical to a well-
calibrated user trust and effective collaboration. Above: Recognizing that the
blocks comprising the two columns aren’t secured to one another, the user
secures them with his hands and relies on the robot’s proficiency at placing
blocks onto a stable platform to finish the arch.

critical boundaries of the state space that straddle where the
robot can and cannot be trusted reliably.

3) When conveying the results of the self-assessment, the
robot should not provide an explanation that is too detailed nor
too abstract, which will deter the efficiency and effectiveness
of the communication. This final thrust will thus determine the
primary variables contributing to the high uncertainty through
sensitivity analysis of the states that comprise the resolved
boundaries in the state space.

II. PROBLEM DEFINITION

Key definitions for the proposed work are as follows:
State space: As the pretrained manipulation policy will

remain fixed, the state space will be defined over relevant
environment variables. For example, for block manipulation
tasks the state space could be over the number, locations, mass,
and coefficient of friction of the blocks.

Proficiency: For a domain M comprised of states µ ∈M ,
assume that a policy π on a state µ yields the measurement
R(π, µ). A common performance measurement of policy π
over a domain M is the average-case performance, which is
defined as φ(π,M, p) =

∑
µ p(µ)·E[R(π, µ)] where p(µ) is the
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probability of that state occurring [6]. In the equation above,
an expectation is taken over R as the measurement may be
stochastic.

In this proposal, the measurement is R(π, µ) is assumed
to be a measure of task success or failure captured by the
indicator function 1Ω(π(µ)) that denotes whether the result
of running the policy π on state µ is or is not in the set
of successful states Ω. Thus, E[R(π, µ)] = E[1Ω(π(µ))] =

p
(
π(µ) ∈ Ω

)
is termed proficiency (i.e. the probability of

task success using policy π in the state µ).
Confidence in proficiency: With proficiency defined as the

probability of task success, the confidence in the proficiency
assessment can consequently be captured by the corresponding
variance (i.e. uncertainty) of that probability.

III. RESEARCH OVERVIEW

1) Uncertainty Characterization: How certain should the
robot be about its proficiency and why? One useful categoriza-
tion of uncertainty that has reemerged in the machine learning
community is epistemic and aleatoric uncertainty. Epistemic
uncertainty arises from a suboptimal model given a set of
input variables, and can theoretically be reduced as more data
is observed. On the other hand, aleatoric uncertainty arises
from unmodeled variables and cannot be reduced even with
more data [7]. Epistemic and aleatoric uncertainties indicate
to a human which uncertainties can be reduced by further
training and which cannot, providing a better understanding
of the current and future limitations of the learned policy.

If the proficiency assessment module is represented as a net-
work, then epistemic uncertainty can be estimated using Monte
Carlo dropout by placing a Bernoulli distribution over the
network weights. Aleatoric uncertainty can then be estimated
with a modified loss function with an extra variance term
[8]. To capture epistemic and aleatoric uncertainties within
a Gaussian Process (GP) instead, appropriate variance terms
may be added to the kernel function [9].

2) Trust Region Discrimination: In which regions of the
state space can the proficiency assessment be trusted? A
relevant field in manipulation is called precondition learning,
which aims to learn the environmental conditions in which
a learned skill is applicable. Recent work on precondition
learning include learning relevant preconditions as features
that exhibit little variation in value before demonstrations [10]
and using a random forest to learn how object shapes and sizes
affect tasks such as placing, pushing, tilting pouring, cutting,
and wiping [11]. However both of these learn the preconditions
in a passive manner over provided demonstrations.

This proposal will instead aim to learn the preconditions
in an active manner. Of specific interest are the boundaries
within the space of possible preconditions that divide those
that map to a proficiency measure with high certainty from
those that map with low certainty. Following [12], a GP could
be used to model this boundary, using straddle heuristic to
actively sample preconditions near the boundary or where the
epistemic and aleatoric uncertainties are high. This boundary
would provide a compact representation of the key states to
be aware of in assessing the robot’s proficiency.

3) Variable Relevance Discrimination: Which environmental
variables are critical to the proficiency of this task? The final

research thrust of this proposal considers the discrimination
of the environmental variables that are critical to the robot’s
proficiency and its self-assessment. One major thrust in recent
explainable AI is sensitivity analysis, which analyzes the
sensitivity of the performance with respect to changes in the
input [13]. For example, sensitivity analysis has been used
to explain image classification decision by determining which
regions of the image lead to the greatest change in prediction
score when perturbed [14]. With new advances in computation
and in the fidelity of physics engines [15], sensitivity analysis
will be performed in simulation.

However, performing sensitivity analysis exhaustively over
the state space will likely be intractable. It has recently
been proposed that in many tasks, the essence of a policy
can be described by actions taken in a few critical states
[16]. For example, the aggressiveness of an autonomous car’s
policy can be better captured by a few key interactions with
other cars (e.g. does it yield to a merging car?) than many
instances driving alone. Thus, sensitivity analysis will only
be performed on states along the boundary discovered in the
previous section.

IV. EXPERIMENTAL OUTLINE

The experiments proposed in this work will study how a
robot’s self-assessment of proficiency may aid in calibrating a
user’s trust. While a single definition and model of trust has yet
to be broadly accepted by the research community, researchers
have extensively studied the relationship between machine
reliability and use without directly modeling the intermediate
variable of trust [17]. This study will therefore also focus on
how the variable of machine proficiency impacts the use of
the robot system and the user’s own assessment of trust.

Specifically, we will consider proficiency within the context
of block manipulation. This domain includes tasks such as the
construction of structures such as towers, as well as knocking
down said structures such that the blocks fall in a particular
direction (tasks common to the literature exploring intuitive
physics [18–20]). The parameters of the blocks (e.g. shape,
size, mass, friction coefficient) and the complexity of the struc-
tures (height, stability, etc) will be changed to vary the levels
of stochasticity and complexity. Each task will be assigned
a certain reward when completed by the human (lower) or
the robot (higher), and the human must decide which tasks to
entrust to the robot in order to maximize the overall score.
Relevant skills will be trained on a Baxter robot using a pre-
existing state-of-the-art reinforcement learning algorithm such
as Guided Policy Search [21] or imitation learning algorithm
such as CLAMP [22].

As noted earlier in the paper, it is critical to calibrate trust
appropriately to prevent under- and overtrusting the robot. In
this work, a well-calibrated trust will be represented by a
‘rational’ user whose use of the robot scales proportionally
to the expected reward for using the robot given the user’s
perceived and robot’s self-assessment of proficiency [23].
More frequent use of the robot in comparison will correspond
to overtrust, and vice versa. How the robot’s self-assessment
of proficiency changes a) the subjective self-assessment of a
user’s trust toward the robot (measured using a Likert scale)
and b) the frequency of robot use will be studied.
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