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Abstract

Explanations are a powerful way of increasing the
transparency of complex Al policies. Such expla-
nations must not only be informative regarding
the policy in question, but must also be tailored
to the human explainee. In particular, it is crit-
ical to consider the explainee’s current beliefs
and the counterfactuals (i.e. alternate outcomes)
with which they will likely interpret any given
explanation. E.g., the explainee will be inclined
to wonder “why did event P happen instead of
counterfactual Q?”” To address this, we first model
huwman beliefs using a particle filter to consider
the counterfactuals the human will likely use to
interpret a potential explanation, which in turn
helps select an explanation that is highly informa-
tive. Second, we design a closed-loop explanation
framework, inspired by the education literature,
that continuously updates the particle filter not
only based on the explanations provided but also
based on feedback from the human regarding their
understanding. Finally, we present a user study
design for testing the proposed closed-loop ex-
planation framework and its ability to improve
human understanding of Al policies.

1. Introduction

Much progress has been made in obtaining complex and
capable policies through reinforcement learning (e.g. for
learning conversational agents (Christiano et al., 2017), rec-
ommender systems (Afsar et al., 2022), and robot policies
(Brohan et al., 2023)). Ensuring the transparency (i.e. un-
derstandability and predictability (Endsley, 2017)) of these
policies in all possible scenarios is key to calibrating the
understanding of developers and end-users toward proper
usage; however, this remains a challenge (Wells & Bednarz,
2021).
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In this work, we seek to increase transparency through ex-
planations, selected through the machine teaching paradigm
(Zhu, 2015) that selects the minimal set of examples (e.g.
demonstrations) that will help a student (e.g. robot end-user)
comprehend a concept (e.g. a policy) given their learning
model. Importantly, the robot’s explanations must not only
be informative with respect to a particular policy but must
also be tailored to a particular explainee (i.e. student).

Miller (2019) highlights that human explanations are inher-
ently contrastive with respect to a specific counterfactual
case, “presented relative to the explainer’s beliefs about the
explainee’s beliefs.” Ehsan et al. (2021) similarly notes that
an “explanation is only explanatory if it can be consumed
by the recipient.” That is, the interaction must be socially
grounded so that the explanation is understandable. Thus,
our key idea is to model the counterfactuals likely to be con-
sidered for a particular explanation while simultaneously
leveraging insights from the education literature on effective
teaching to ensure their understandability.

We preview the importance of both counterfactual and ed-
ucational considerations through a concept known as the
zone of proximal development or “Goldilocks zone” (Hattie
& Clarke, 2018; Vygotsky, 1980), which suggests that the
examples provided to the learner should not be too easy and
not too difficult given their current beliefs. For instance,
we observed in our prior work (Lee et al., 2021) that hu-
mans struggled to understand highly informative examples
right from the outset, as their beliefs were unlikely to give
rise to the nuanced counterfactuals necessary for correctly
interpreting the example.

To illustrate the efficacy of leveraging counterfactual rea-
soning and insights from the education literature, consider a
robot that aims to make its reward function and subsequent
policy more transparent to a human using demonstrations
(i.e. examples), tests, and feedback (Fig. 1) according to
our proposed closed-loop teaching framework (Fig. 2). The
robot’s objective is to deliver a package to the destination,
whose reward function balances traveling through difficult
terrain, like mud, and reducing the overall number of actions
it takes (i.e. steps). To convey its reward function, imagine
the robot first provides a human with the demonstration in
Fig. la. Because the robot takes a two-action detour to
avoid the mud instead of going through it (a natural coun-
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terfactual), the human may infer that the robot associates a
negative reward with going through mud.

After providing the first demonstration (i.e. the two-step
move around the mud), the robot considers what to demon-
strate next to convey more information regarding its reward
function. Importantly, it knows that the human likely knows
that mud is costly from the first demonstration, but does not
know how costly. For instance, the human may counterfac-
tually believe that the robot would take a four-action detour
when faced with two mud patches (Fig. 1b). However, the
robot knows that its ratio of mud to action reward is -3 to -1
and that consequently, it would simply go through the mud
in Fig. 1b to maximize its reward. Seeing how its direct
path meaningfully differs from the human’s likely counter-
factual of the sizeable detour, the robot considers this to be
an informative next demonstration to provide the human
with a lower bound on the cost of mud. Furthermore, we
highlight that this demonstration aims for the “Goldilocks
zone” as it provides a meaningful yet limited update to the
human belief through one additional unit of information that
further bounds the cost of the mud.

After two demonstrations have been provided, the festing
effect (Roediger I1I & Karpicke, 2006) in the education lit-
erature suggests dedicating a portion of the teaching budget
on testing to increase student learning. Thus, the robot can
provide the human with a diagnostic test that will reveal the
accuracy or drift of the robot’s current model of the human’s
beliefs. If the human answers incorrectly, then the robot
may provide feedback, a remedial demonstration, and re-
medial tests until the human demonstrates concept mastery.
Importantly, the robot must continue to update its model of
the human’s beliefs throughout the remedial interactions to
ensure that it can consider the right counterfactuals when
selecting the next series of demonstrations.

The above interaction demonstrates the importance of 1)
a calibrated model of the human’s beliefs and providing
informative explanations that contrast with the human’s
likely counterfactuals and 2) the benefits of a closed-loop
interaction to ensure that explanations are in fact understood
and are within the zone of proximal development.

Our contributions are as follows. First, a particle filter model
of human beliefs that supports iterative updates and a cal-
ibrated prediction of the counterfactuals likely considered
by the human for each demonstration (i.e. explanation) that
could be provided. Second, a closed-loop teaching frame-
work based on insights from the education literature that
provides demonstrations, tests, and feedback while continu-
ously updating the model of human beliefs. Third, a plan
for a user study to test the proposed closed-loop teaching
framework and reasoning over counterfactuals for generat-
ing informative and understandable demonstrations.

2. Related Work

Example-based Counterfactual Explanations: Example-
based explanations represent a class of methods that have
long been studied to aid transparency, e.g. by providing
prototypical examples that can summarize a dataset (Bien &
Tibshirani, 2011). In line with Miller (2019)’s affirmation
that effective explanations are inherently contrastive, Kim
et al. (2016) showed that presenting not only prototypes
but also criticisms (i.e. representative examples that deviate
from the prototypes) was especially helpful in aiding human
understanding of a dataset distribution.

As models for decision making get larger and more opaque,
there has been significant interest in utilizing counterfactual
explanations for greater transparency of decision systems.
While the vast majority of these methods explore how clas-
sification outcomes may have changed if the input had been
different (Verma et al., 2020), other methods explore how
changes in the model parameters themselves may lead to
different outcomes (Bui et al., 2022). Counterfactual expla-
nations have also been utilized in other domains, the closest
to our work being in planning (Stepin et al., 2021). While
Sukkerd et al. (2020) and Sreedharan et al. (2018) both con-
sider providing explanations based on counterfactuals, the
former focuses solely on the tradeoffs in quality attributes
of the plan (e.g., execution time, energy consumption, etc)
and does not model the human explainee’s beliefs, and the
latter provides explanations in the form of propositions and
predicates that deviate from the human’s counterfactual plan
rather than providing examples as explanations.

Policy Summarization: Policy summarization aims to pro-
vide a global understanding of a policy to a user through
example state-action pairs (Amir et al., 2019), which can aid
in transparency. The first approach relies on heuristics such
as entropy or differences in Q-values to select states and
actions to show (Huang et al., 2018; Amir & Amir, 2018).

We instead build on the second approach based on machine
teaching (Zhu et al., 2018). Machine teaching aims to teach
a target model (e.g. reward function) to a learner with a
given learning model (e.g. inverse reinforcement learning or
IRL) using a minimal set of teaching examples (e.g. demon-
strations). Methods for conveying a robot’s reward function
and/or behavior to humans are surveyed by Sanneman et al.
(Sanneman & Shah, 2022) and Booth et al. (Booth et al.,
2022) and we summarize a few relevant works below.

Brown and Niekum (Brown & Niekum, 2019) proposed the
Set Cover Optimal Teaching (SCOT) algorithm for select-
ing demonstrations that provide the tightest constraints on a
target reward function for a pure IRL learner. However, hu-
man learning is more multi-faceted and our prior work Lee
et al. (2021) tailored SCOT for humans by incorporating
human learning techniques such as scaffolding. Our ini-
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Figure 1. A sample teaching sequence for a batch of knowledge components on the cost of mud. (a) A robot’s demonstration (green)
is shown in contrast to a counterfactual alternative likely considered by a human (orange), which conveys that mud is costly. (b) The
robot’s demonstration lowerbounds the cost of the mud. (¢) The human is asked to predict the robot’s behavior in a test. (d) An incorrect
response indicates that the demonstration was not understood. (e) The human is given the correct response as feedback. (f) A remedial
demonstration is provided to target the misunderstanding. (g) The human is asked to answer the remedial test. (h) A correct answer
indicates that the human understood the explanation.
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Figure 2. Proposed closed-loop teaching framework. A batch of related knowledge components (KCs) is passed to the Al explainer.
The demonstrator generates demonstrations that explain the KC, the tester provides a test, and the evaluator analyzes the
test response to see which KCs were understood. If the test was incorrectly answered, the evaluator provides the correct answer
as feedback, before updating the model of human knowledge. The KCs contained in the human model are compared to the KCs to be
understood. If there is a difference and there remain KCs to explain in this batch, then a remedial demonstration and a remedial test is
provided. If the remedial test is answered incorrectly, feedback is provided and the switch (labeled ‘S’) flips such that only tests and
feedback are provided until the remaining KCs in this batch are understood. Once all of the KCs in this batch are understood, the switch
flip upward again (to also provide demonstrations) and a fresh batch of KCs is pulled from the KC bank.

tial method of scaffolding via IRL did not yield significant
learning gains, which we improved upon by incorporating
counterfactuals based on the human’s beliefs regarding the
robot’s reward function (Lee et al., 2022). However, this

method models the human learner as using exact IRL (Ng
& Russell, 2000), which is unable to gracefully handle con-
flicting information (e.g. knowledge that was assumed to
be learned but fails to be demonstrated during testing). Fur-
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thermore, we only utilized tests for assessment after having
provided demonstrations. We build on this by proposing a
Bayesian model of human beliefs in the form of a particle
filter and also utilize testing in between demonstrations to
iteratively update the human model of beliefs and better
ensure understandability.

Finally, we note that Huang et al. (2019) use Bayesian (Ra-
machandran & Amir, 2007) and MaxEnt (Ziebart et al.,
2008) IRL as alternate models of how humans may recover
the reward function underlying selected demonstrations.
Though these models can incorporate the learner’s beliefs
(and subsequent counterfactuals) via beliefs initially sam-
pled from a prior over the robot’s reward function, such
beliefs are not resampled with additional demonstrations,
making these IRL methods sensitive to the initial sampling
and perhaps leading to slower convergence to the robot’s
reward function. We instead allow for resampling (Li et al.,
2013) within our particle filter model to more efficiently
use samples in approximating the posterior distribution of
human beliefs.

3. Technical Background

In considering which demonstrations to provide to convey
its reward function, the robot assumes that the human uses
IRL-like reasoning (Jara-Ettinger, 2019) to infer the reward
function underlying the demonstrations, which they can
use to deduce the corresponding policy for using planning
(Shteingart & Loewenstein, 2014). This section details the
technical background necessary for selecting informative
demonstrations for a learner using IRL to infer a reward
function underlying demonstrations.

Markov decision process: The robot models its world as
an instance (indexed by ¢) of a Markov decision process,
M DP;, comprised of sets of states S; and actions A, a
transition function 7;, reward function R, discount factor
7, and initial state distribution S?. We refer to a group of
related MDP instances as a domain (described below) and
S : |UJ; Si is the union over all of their states. An optimal
trajectory £* is a sequence of (s;, a, s;) tuples obtained by
following the robot’s optimal policy 7*. Following prior
work (Abbeel & Ng, 2004), R = w*TqS(s7 a, s') is repre-
sented as a weighted linear combination of reward features.
Finally, we assume the human is aware of the full MDP
apart from weights w*.

A domain is a group of MDPs that share R, A, and ~y but
differ in T}, S;, and SY. For example, all MDPs in the deliv-
ery domain share the same R even though they may contain
different mud patches (Figs. 1a and 1b). Thus through IRL,
all demonstrations within a domain will support inference
over a common w*. We simplify the notation such that 7*
refers to any optimal policy within a domain, and £* refers

to a demonstration (dropping the corresponding MDP).

Machine teaching for policies: Our objective to select
informative demonstrations for conveying 7* is captured by
the machine teaching framework for policies (Lage et al.,
2019). We aim to select a set of demonstrations D of size n
that maximizes the similarity p between optimal policy 7*
and the policy 7 recovered using a computational model M
(e.g.,IRL)on D

argmax p(7(D, M), n*) st. |[D|=n )
Dcz

where = is the set of all demonstrations of 7* in a domain.
Once w* is approximated through IRL, this approach as-
sumes that the learner is able to deduce 7* by planning on
the underlying MDP. Thus, the objective reduces to select-
ing demonstrations that are informative at conveying w*,
which can be measured using behavior equivalence classes.

Behavior equivalence class: The behavior equivalence
class (BEC) of a demonstration is the region of reward
functions under which the demonstration is still optimal.

For a reward function that is a weighted linear combination
of features, the BEC of a demonstration £ of 7 is defined
as the intersection of half-spaces (Brown & Niekum, 2019)
formed by the exact IRL equation (Ng & Russell, 2000)

BEC(¢|m) := w ' (uw - MS;W) > 0,Y(s,a) € &b e A.

@
where 15" = E Do o (se) | w80 = s,a0 = a] is
the vector of reward feature counts accrued from taking
the action a in s, then following 7 after. Any demonstration
can be converted into a set of constraints on w using (2).
Importantly, each constraint can be considered as a knowl-
edge component (Koedinger et al., 2012) which captures
a characteristic of the reward function (e.g. the tradeoffs
between the underlying reward features).

Consider again the delivery domain, which has binary re-
ward features ¢ = [traversed mud, battery recharged, ac-
tion taken], w* o [—3,3.5, —1]. In practice, we require
[[w*||2 = 1 to bypass both the scale invariance of IRL
and the degenerate all-zero reward function. If no prior
knowledge is assumed, the potential reward weights in the
human’s mind would uniformly span the full surface of the
n — 1 sphere due to the L2 norm constraint on w*, where n
is the number of domain features. We instead assume that
human begins with a prior that action weight is negative
(e.g. a bias to take the shortest path). The demonstration
in Fig. 3b yields the constraint (or knowledge concept) in
Fig. 3c, which indicates that wg < 2w3 (i.e. mud must be
at least twice as costly as an action), since two actions were
taken to detour around the mud rather than counterfactually
going through it.
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4. Methods

The running example of the delivery robot in Section 1
highlights the importance of maintaining an accurate model
of human beliefs and likely counterfactuals when deciding
on an informative demonstration (e.g. the robot selects the
second demonstration of going through the two mud in Fig.
1 because it believes the human’s current beliefs would lead
them to counterfactually expect the robot to go around the
mud).

In this section, we propose a particle filter-based model
of human beliefs that is amenable to iterative Bayesian
updates and sampling for counterfactual reasoning. We then
leverage this model in a closed-loop teaching framework
that leverages insights from the education literature to ensure
that the demonstrations are understood.

4.1. Particle Filter Human Model

Though we previously modeled the human as an exact IRL
learner (Lee et al., 2022), this choice falls short for two rea-
sons. First, people are more likely to perform approximate,
rather than exact, inference (Huang et al., 2019). Second, a
model of human beliefs solely comprised of half-spaces can-
not handle conflicts that arise when the human incorrectly
applies a knowledge component during testing that was as-
sumed learned during teaching (as you cannot reconcile
two identical half-space constraints that point in opposite
directions).

We thus move to a probabilistic human model in the form
of a particle filter (Doucet et al., 2009). Each particle repre-
sents a potential human belief regarding the robot’s reward
function, and particle weights are updated in a Bayesian
fashion based on constraints conveyed through teaching
demonstrations and test responses. Leveraging both con-
straints and Bayesian updates gracefully affords both rea-
soning over discrete KCs (e.g. a lesson comprises a batch
of related KCs) and a probabilistic modeling of human un-
derstanding that is amenable to iterative updates during
teaching and testing. The particle filter routines outlined the
following sections come together in Alg. 1.

4.1.1. UPDATING PARTICLE POSITIONS AND WEIGHTS

Assume a set of particles, defined by their positions and
associated weights {x;, w;}. Without loss of generality,
assume that a demonstration or test response is provided at
each time step . Each demonstration generates multiple
constraints by comparing the demonstration against possi-
ble counterfactuals and each incorrectly answered test will
generate a single constraint by comparing the true test an-
swer against the incorrect answer, both through Eq. 2. Each
constraint y; can be translated into a probability distribu-
tion p(z+|y;) that can be used to update the weights of each

particle.

We propose a custom probability distribution p(x;|y;) for
each constraint as a combination of the uniform distribution
that aligns with the correct half-space of the constraint and a
Von-Mises Fisher distribution that aligns with the incorrect
half-space (Fig. 4). The uniform distribution captures the
notion that any particle lying on the correct half-space is
equally valid for that demonstration, whereas the Von-Mises
Fisher distribution captures the notion that a particle is ex-
ponentially less likely to have generated that demonstration
as you move away from the constraint.

Finally, we address common challenges to using particle
filters in practice. Sample degeneracy occurs when succes-
sive updates to the weights of the particles causes only a
few particles to have high weight and fails to model regions
of interest in the posterior with sufficient detail (Li et al.,
2014). Furthermore, the number of particles (i.e. sample
size) should adapt to the complexity of the distribution be-
ing modeled (Straka & Simandl, 2009). To address both
concerns, we rely on KLD-resampling (Li et al., 2013) to
obtain the sample size that bounds the Kullback-Leibler
divergence between the sample-based maximum likelihood
estimate and the true posterior distribution, and simulta-
neously rely on systematic resampling to concentrate the
sampling near regions of high probability. Finally, measures
to combat sample degeneracy can actually cause sample
impoverishment, where the particle filter is too concentrated
and not amenable to future shifts in the posterior. Thus we
only resample when the effective sample size (a measure of
sample degeneracy) drops below a predefined threshold and
also add Gaussian noise when resampling the particles (Li
etal., 2014).

4.1.2. RESETTING THE PARTICLE FILTER

The particle filter may converge then suddenly obtain new
information that is not very consistent with the current dis-
tribution (see Fig. 6). In this case, the filter will struggle to
update as none or very few of the particles weights would be
increased to shift the distribution in a meaningful way. We
thus implement particle filter resetting, taking inspiration
from sensor resetting localization (Lenser & Veloso, 2000;
Coltin & Veloso, 2013) that combats the kidnapped robot
problem, where the robot has been moved without being
told and must reinitialize its localization. Our particle filter
resetting triggers when the weights of the particles after
accounting for p(z|y;) and before weight normalization
(line 11 of Alg. 1) drops below a threshold. We uniformly
distribute a set number of particles into the correct half-
space (Fig. 6b) and again rely on KLD-resampling (Li et al.,
2013) to obtain the number of particles that will bound the
Kullback-Leibler divergence between the posterior distri-
bution following the reset and its sample-based maximum
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Figure 3. Example sequence on how a demonstration updates a particle filter model of human beliefs. Ground truth reward of the robot is
shown as a red dot, and the constraint (or knowledge component) corresponding to the demonstration is shown in all plots for visual
reference. (a) Particles before demonstration is shown (prior). (b) Demonstration shown to human. (¢) The exact IRL constraint (obtained
used Eq. 2) corresponding to the demonstration in (b) that conveys that mud must be at least twice as costly as an action. The likelihood
used to update the particle weights will be the custom distribution that combines the uniform and Von-Mises Fisher distributions, whose
orientation will be aligned to the exact IRL constraint it approximates (see Fig. 4). (d) Particles after demonstration is shown (posterior).
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Figure 4. The custom probability density function (pdf) for updat-
ing particle weights (see Alg. 1) based on a constraint generated
from a demonstration (Eq. 2) shown in 2D. The right side of the
constraint consists of the uniform distribution as any particle on
the correct side is equally likely. The left side of the constraint
consists of the Von-Mises Fisher distribution that represents an
exponential fall-off of likelihood.

likelihood estimate. We then sample that number of parti-
cles directly from the custom distribution corresponding to
p(2¢|y:) and add it to the particle filter. An example particle
filter resetting procedure is shown in Fig. 6.

4.1.3. SAMPLING HUMAN BELIEFS

Given a running particle filter model, we may sample human
beliefs in order to do counterfactual reasoning. We first run
systematic resampling on the particles to downselect to a
candidate set, accounting for the differences in the weights
of the particles and favoring those that are higher weighted.
We then rely on the 2-approximation algorithm for the k-
center problem (Hochbaum & Shmoys, 1985) to greedily
select k samples that are spread out such that the maximum

Algorithm 1 Particle Filter for Modeling Human Beliefs
1: Initialize particles x(()i)
2: fort=1,...,T do

~p(xg)fori=1,...,N

3: // Update filter given new demonstration or test at ¢
4: fori=1,...,Ndo
5: Compute weight i\") = ", - p(2\”|y)
6: end for
. e N () -
7: if Zj:l ;" < Wehreshold then
8: /I Particle filter has degraded
9: Perform a particle filter reset > Section 4.1.2
10: end if
. iz weights ) — __@t”
11: Normalize weights w; ~ = ST
j=1
12: Compute effective sample size neg = m
13: if ner < Ninreshola then _
14: Resample particles 2" with probabilities 1"
using KLD resampling
15: end if
16: end for

distance from any particle in the candidate set to one of the
k samples is minimized (see Fig. 5).

4.2. Closed-loop Teaching

With a particle filter model of human beliefs that is amenable
to iterative updates via demonstrations and tests, we now
formulate a closed-loop teaching framework for conveying
a robot’s reward function to a human. As we walk through
the framework that is visualized in Fig. 2, we highlight
the principles from the education literature that guide the
design. A rollout of a sample teaching sequence is shown in
Fig. 1, which may serve as a visual correspondence to the
high-level overview of the sequence is provided in Alg. 2.
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Wy: Action

Figure 5. Human counterfactuals are generated by sampling beliefs
from the particle filter model. As nearby particles are likely to
generate similar counterfactuals, we rely on the 2-approximation
algorithm for the k-center problem to sample k beliefs (marked by
red crosses) that are spread out.

We first leverage feature and counterfactual scaffolding from
our prior work (Lee et al., 2022) to select knowledge com-
ponents (KCs) that incrementally increase in information
across an increasing subset of features (e.g. bounds on the
cost of the mud given the step cost, bounds on the reward
of recharging given the step cost, then tradeoffs between all
three — e.g. is it worth going through two steps and mud to
recharge?).

We begin the loop by taking a single batch of related KCs
that define a lesson (e.g. bounds on the cost of the mud given
the step cost) and providing it to the demonstrator (see
Fig. 2) to select demonstrations that best convey these
KCs. Specifically we utilize counterfactual reasoning (Lee
et al., 2022) to select demonstrations that are informative
with respect to the counterfactuals likely considered by the
human'. We simultaneously leverage the educational princi-
ples of the zone of proximal development or the “Goldilocks”
zone (Hattie & Clarke, 2018; Vygotsky, 1980) to provide
a sequence of demonstrations that provide information in-
crementally, e.g. demonstrations that convey one new con-
straint at a time (such as an upper bound then a lower bound
on mud cost).

After the demonstrations have been provided, the tester
selects diagnostic tests that will verify whether or not the hu-
man has learned the lesson, such that the correct responses
will require knowledge of the corresponding KCs. This is
motivated by the educational principle of the testing effect
(Roediger III & Karpicke, 2006), which suggests that learn-
ing outcomes are increased when a portion of the teaching

'These initial demonstrations are selected using an idealized
model of the human as an exact IRL learner and deviations are
corrected using a particle filter model of the human, remedial
demonstrations, and tests in our proposed closed-loop teaching.

budget is devoted to testing the student. These diagnos-
tic tests will also aim toward visual dissimilarity from the
teaching demonstrations and be visually complex (Lee et al.,
2022) to challenge the learner and test their understanding.

If the evaluator notices that the human answered the
diagnostic test incorrectly, then it will provide immediate
feedback to the human on how their answer differed from
the correct one, inspired by the findings that immediate
feedback on errors lead tp more efficient learning and better
learning outcomes (Corbett & Anderson, 2001; Koedinger
et al., 2013). The evaluator will also update the particle
filter model of the human’s knowledge (i.e. beliefs) given
the diagnostic test response.

If the KCs in this lesson and the KCs exhibited in the test
response match, then there are no KCs left to learn, and KCs
for the next lesson are provided by the KC bank. If there
are still KCs left to teach, then the demonstrator will
provide a remedial demonstration that conveys that KC with
visual simplicity (i.e. without any distracting visual clutter)
(Lee et al., 2021). Note that we utilize the particle filter
model to consider the counterfactuals the human is likely to
consider for each potential demonstration in order to select
the one that conveys the missed KC. Then the tester will
again provide a remedial test with visual complexity, and
the evaluator will again analyze the test response and
update the human model.

If the human gets the remedial test wrong, the switch in Fig.
2 (labeled ’S’) flips and the tester and evaluator will
continue to provide only remedial tests and corresponding
feedback (but no additional demonstrations) until the hu-
man shows understanding of the KC. This is motivated by
the expertise reversal effect (Kalyuga, 2009), which, when
paired with the testing effect, finds that the learners with
increased expertise in a material will benefit more from addi-
tional testing (in varied contexts) over additional instruction
(Koedinger et al., 2012).

Finally, the human’s understanding of the explained policy
can be evaluated via their performance on a held-out set of
tests in which they predict the policy in unseen scenarios.

5. Proposed user study

We are currently creating an online user study that will ex-
plore whether our proposed closed-loop teaching method
improves a human’s understanding of a robot’s policy. The
study will involve participants watching robot demonstra-
tions in three deterministic domains and predicting the
robot’s behavior in new test environments. The partici-
pants will be explicitly informed of each domain’s reward
features, but will have to infer the respective reward weights
by watching demonstrations.
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Figure 6. When a test is answered in a way that is heavily inconsistent with the current model of human beliefs, we perform a reset
(Section 4.1.2). The constraint consistent with the test response is shown in all panels for reference, with correct side of the constraint
visualized via the uniform distribution in the center. Ground truth reward of the robot is shown as a red dot.

Algorithm 2 Closed-loop Teaching Framework

1: Determine batches of knowledge components (KC) us-
ing counterfactual scaffolding to form lessons
2: for For each batch of KCs (i.e. lesson) do

3 Provide initial demonstrations
4 Provide diagnostic test
5: Evaluate diagnostic test response
6: if diagnostic test response is incorrect then
7 Provide feedback
8 Provide remedial demonstrations
9: Provide remedial test
10: Evaluate remedial test response
11: while remedial test response is incorrect do
12: Provide remedial test
13: Evaluate remedial test response
14: end while
15: end if
16: end for

The between-subjects variable will be feedback loop (open,
partial, and full). The open feedback loop will follow our
prior work (Lee et al., 2022) in selecting an set of informa-
tive demonstrations a priori using counterfactual reasoning
that iteratively decrease in BEC area. Partial feedback loop
will provide a diagnostic test after each lesson and provide
a correction if necessary, while the full feedback loop will
also provide a remedial demonstration and remedial tests
until correct knowledge of the KC in question is shown by a
correct remedial test. The efficacy of the three conditions for
teaching the robot’s policy will be evaluated by a held-out
set of tests at the end of the study (these tests will be pulled
directly from our prior work (Lee et al., 2022)).

Our hypotheses are that the full feedback loop will lead
to the best performance on the held-out tests and also be
rated most positively in terms of subjective experience. For
more details on the domains, measures, and hypotheses, and

general study design, please refer to Appendix A.

6. Conclusion

In this paper, we propose a means of leveraging example-
based explanations (i.e. demonstrations) to increase the
transparency of complex policies. In alignment with prior
work, we stress that effective explanations must consider
how the explainee will interpret it given their current be-
liefs, namely what counterfactuals they are likely to use in
extracting information from the explanation. Toward our
goal of increased transparency, we presented a particle filter-
based model of human beliefs that can be used to select
informative explanations. With insights from the education
literature, we designed a closed-loop explanation framework
that not only provides understandable explanations but also
incorporates feedback regarding the human’s current under-
standing back into the robot’s model of the human’s beliefs.
Finally, we presented a user study design for testing our
proposed particle filter model and closed-loop explanation
framework.

Although we explored counterfactually-informed explana-
tions in the context of robotics, this work is also applicable
to explaining policies for sequential decision making more
broadly. For example, Ernst et al. (2006) proposed a rein-
forcement learning-based treatment policy for HIV based
on clinical data. Prasad et al. (2019) proposed a low di-
mensional version of the HIV domain based on a reward
function that is a linear combination of three reward features
— a direct analog of the delivery domain used in this work.
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Figure 7. Three domains to be used for the user study, each with a different set of reward weights to infer from demonstrations: (a)
delivery (b) tiles (c) skateboard. The semantics of the various objects were hidden using abstract geometric shapes and colors.

A. Additional details on user study design
A.1. Domains

Each of the three domains to be used in the user study will consist of one shared action reward feature (that helps penalize
each action), and two unique reward features as follows (see Fig. 7).

Delivery domain. The robot is penalized for moving out of mud and rewarded for recharging.
Tiles domain. The robot is penalized differently for traversing the two differently shaped tiles.

Skateboard domain. The robot is penalized less per action if it has either picked up a skateboard (i.e. riding is less costly
than walking) or is traversing through a designated path.

A.2. Expected progression of user study

The user study itself will primarily consist of three trials, with each trial comprising a teaching portion and an assessment
portion in a unique domain. During teaching, participants will first be explicitly informed of the reward features of the
domain. Then they will infer the corresponding reward weights by watching demonstrations and potentially also taking tests
depending on their feedback loop condition and provide subjective ratings on whether each demonstration or test improved
their understanding of the robot’s policy (M2). After the teaching portion, questions from the User Engagement Scale
Short Form (O’Brien et al., 2018) on ‘focused attention’ and ‘perceived usability’ will measure how engaged the user was
(M3-M4).

During assessment, participants will be tasked with predicting the optimal trajectory in six unseen test environments (a
random order of two high, medium, and low difficulty environments each) (M1).

The following measures (M1-M4) will be used to test the hypotheses below (H1-H4).
M1. Optimal response: Participants are assigned a binary score depending on the optimality of their test trajectory.

M2. Improved understanding rating: “Did this [demonstration or test] improve your understanding of game strategy?”,
answered with a 5-point Likert scale

M3. Focused attention: “I lost myself in this experience./The time I spent learning the game strategy just slipped away./I
was absorbed in this experience.”, each rated with a 5-point Likert scale

M4. Perceived usability: “I felt frustrated while learning the game strategy./I found learning the game strategy confus-
ing./Learning the game strategy was taxing.”, each rated with a 5-point Likert scale

H1: The full feedback loop condition will result in the highest optimal responses and the open feedback loop condition will
result in the lowest.

H2: The full feedback loop condition will result in the highest average rating of improved understanding and the open
feedback loop condition will result in the lowest.
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H3: The full feedback loop condition will result in the highest ratings of ‘focused attention’ and the open feedback loop
condition will result in the lowest.

H4: The full feedback loop condition will result in the highest ‘perceived usability’ ratings as it is more tailored for the
student, and the open feedback loop condition will result in the lowest overall. However, the full feedback loop condition
may also be rated to be the most taxing as instruction in the zone of proximal development often leads to high learning gains
while requiring mental effort on the part of the student (Lee et al., 2022) (as opposed to instruction that is too easy that will
not be taxing but also will not result in any learning).



