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Abstract— Human and robot partners increasingly need to
work together to perform tasks as a team. Robots designed for
such collaboration must reason about how their task-completion
strategies interplay with the behavior and skills of their human
team members as they coordinate on achieving joint goals. Our
goal in this work is to develop a computational framework
for robot adaptation to human partners in human-robot team
collaborations. We first present an algorithm for autonomously
recognizing available task-completion strategies by observing
human-human teams performing a collaborative task. By
transforming team actions into low dimensional representations
using hidden Markov models, we can identify strategies without
prior knowledge. Robot policies are learned on each of the
identified strategies to construct a Mixture-of-Experts model
that adapts to the task strategies of unseen human partners.
We evaluate our model on a collaborative cooking task using an
Overcooked simulator. Results of an online user study with 125
participants demonstrate that our framework improves the task
performance and collaborative fluency of human-agent teams,
as compared to state of the art reinforcement learning methods.

I. INTRODUCTION

Robots increasingly serve as collaborative partners in
applications where humans cannot operate alone, such as
robot-assisted elder care [1] and cooking [2]. In such ap-
plications, humans may employ any number of equally
reasonable strategies to achieve their goals. Robots designed
for collaboration should be able to adapt their behavior in
order to coordinate with the different strategies employed by
different human partners [3].

Poor coordination between partners can lead to inefficient
collaboration on tasks. Consider a robot and human partner
working together to make a sandwich. Both partners get
condiments, believing the other is getting the bread. This
disfluency results in task inefficiencies: production time
increases since one agent now must locate the bread before
they are able to begin assembling the sandwich; and cleanup
time increases since double the amount of condiments have
been taken out. In collaborative tasks without explicit verbal
communication, teams can be even more susceptible to
disfluencies like these. In order to overcome disfluencies,
team members must be able to coordinate by inferring their
partner’s strategy from their observable actions.

In this work, we explore the following question: How
can a robot partner recognize the task strategy employed
by a human partner, and adapt its own response online?
Prior work leverages human-human team demonstrations to
learn robot behavior policies for collaborative tasks [4], using
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Fig. 1: The offline training paradigm consists of strategy recognition and
training a policy library of strategy-specific agent policies. Beliefs over
strategies are updated online during interactions with new partners. Actions
taken by the robot are sampled from a belief-weighted combination over
action distributions generated by each strategy-specific policy.

human data in aggregate, without separating the demonstra-
tions by strategy. When a dataset contains one class that is
underrepresented, the trained model often generalizes well
to the majority class but poorly to the minority class, a
problem addressed by techniques including undersampling
[5]. This type of aggregate model performs well with the
“average” or most common human behavior, but may miss
underrepresented strategies. On the other hand, an agent
that can distinguish between strategies will likely generalize
better to a greater diversity of human behavior.

We propose a method for a robot to identify and adapt
to discrete, task-oriented strategies that determine the team’s
behavioral patterns. We situate our work in the simulated
Overcooked domain, a human-robot collaborative cooking
testbed. Using data collected in [4] of human-human team
task demonstrations for five different kitchen environments,
we annotate the trajectories to represent them as high level
task sequences. Next, we transform the annotated sequences
of team actions into low dimensional representations using
hidden Markov models. Clustering on the low-dimensional
representations extracts groups of similar team behavior,
which define discrete strategies representing different team
approaches employed on a collaborative task. Robot policies
are trained using apprenticeship learning [6] to imitate dis-
tinct strategies. The resulting agent is a Mixture-of-Experts
model that maintains a dynamic belief over the strategy space
for unseen human partners at test time.

We conducted an online user study to investigate the
utility of coordination on behavior in human-robot teams.
125 participants performed a collaborative task with our
proposed agent as well as with an existing baseline agent
[4] in the five environments for which we had data. Our
approach improved team task performance in two of the five
tested environments and team collaborative fluency in three
of the five tested environments.



II. RELATED WORK

1) Ad-Hoc Teaming: Ad-hoc teaming in Human Robot
Interaction (HRI) requires the ability of robot agents to adapt
to unseen partners [7, 8], who may differ in knowledge,
skill, and behavior. Prior work [7] proposes a general pur-
pose algorithm that reuses knowledge learned from previous
teammates or experts to quickly adapt to new teammates. The
approach takes two forms: (1) model-based, which develops
a model of previous teammates’ behaviors to predict and
plan in online, and (2) policy-based, which learns policies
for previous teammates and selects an appropriate policy
online. Another important challenge in ad-hoc teaming is
modeling uncertainty over partner characteristics [9, 10]. In
the Overcooked environment, [4] showed that incorporating
human models learned from data improves the performance
of agents compared to agents trained to play with themselves.
Instead of training agents to partner with a general human
proxy model as in [4], we train a library of strategy-specific
agent policies that represent different coordination behavior
patterns. Distinguishing strategy allows for a policy library
that captures differences in team coordination patterns that
may otherwise wash out in a single general model.

2) Multi-agent Reinforcement Learning: In cooperative
multi-agent settings, self-play (SP) trains a team of agents
that work well together. A collaborative agent that excels
with the partners with which it was trained may not gen-
eralize well to new partners at test time, especially when
the new partners differ significantly from the pool used for
training [11]. Other-play (OP) [12] addresses this problem,
demonstrating improved zero-shot coordination with human-
AI performance on the Hanabi game [13]. A self-play train-
ing paradigm that assembles agents representing untrained,
partially trained, and fully trained partners by extracting
agent models at different checkpoints in the training duration
has been shown to produce robust agents trained on the
suite of partners [14]. Prior work [15] models opponents in
deep multi-agent reinforcement learning settings by training
neural-based models on the hidden state observations of
opponents. A Mixture-of-Experts architecture maintains a
distribution over different opponent strategies, allowing this
model to integrate different strategy patterns.

3) Adaptation in Human-Robot Interaction: Past research
has studied how robots can adapt and learn from human
partners. Key to robot-to-human adaptation is understand-
ing people’s behavior through observation. Markov Deci-
sion Processes (MDPs) are a common framework for goal
recognition [16]. By learning a model of human intent and
preferences [17], robots can reason over different types of
human partners [18, 19]. Similar in vein to our work, [20]
applied a best-response approach to selecting policies from
a library of response policies that best match a particular
player type. Building an understanding of the human partner
requires multi-faceted models of humans that capture nu-
anced differences. Our work on adaptation focuses primarily
on adapting robot behavior to the task approach (strategy) of
a human partner. Our adaptation approach is similar to [21],
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Fig. 2: The Overcooked experimental layouts. Environments vary in the
amount of constrained space, actions available to different player positions,
and interdependence of player actions to achieve the objective.
where human demonstrations are clustered into dominant
types and a reward function is learned for each type, for
which Bayesian inference is used to adapt to new users.

III. PRELIMINARIES

1) Task Scenario: In order to study human-robot col-
laboration, we study the Overcooked environment [4], a
collaborative cooking task. Dyads (consisting of robot agents
or humans) collaborate in a constrained shared environment
(Fig 2). Their objective is to prepare an order (onion soup)
and serve it as many times as possible in an allotted time.

2) Strategies: In the Overcooked task, agents must per-
form sequences of high-level tasks to serve orders. Examples
of high-level tasks include picking up onions and plates,
placing onions into pots, and serving soup. Each high-level
task requires a sequence of lower level subtasks (i.e. motion
primitives). Teams collaborate on shared tasks in different
ways. For example, in role specialization, players take sole
responsibility for particular tasks, whereas in complete-as-
needed approaches, each partner performs the next required
task. In addition to role-oriented strategies, collaborative
approaches also prescribe the order in which tasks are
performed. Teams that serve dishes while the next orders
are cooking employ more time-efficient strategies. We define
collaborative strategies as the sequence in which high-level
tasks are interleaved and distributed across teammates. Since
actions of all team members are involved in task approach,
strategy is computed at the team level.

3) MDP Formulation: The task is modeled as a two-
player Markov decision process (MDP) defined by tuple
⟨S,A = {A1,A2}, T , R⟩. S is the set of states. The action
space of a game with two players is A = A1 × A2. The
set of actions available to each player i is Ai. The transition
function T determines how the state changes based on a
joint action by both players, T : S × (A1,A2) → S .
R : S → R is the team reward function. πi represents agent
i’s policy. Z = {z1, ..., zK} represents the set of possible
team collaborative strategies. We further denote a policy that
corresponds to strategy zk as πk.

IV. APPROACH

We introduce MESH (Matching Emergent Strategies to
Humans) as an approach for coordination of collaborative



strategies with human partners. The MESH approach is com-
prised of two components: strategy recognition and Mixture-
of-Experts adaptation (Fig 1). In the strategy recognition
step, MESH learns the latent strategies employed by different
human teams using unsupervised learning on team trajec-
tories. Since strategies are learned over teams, the MESH
agent aims to coordinate on the same strategy employed by
the human partner. Once team collaborative strategies are
identified, we apply apprenticeship learning to train policies
that imitate each extracted strategy. These strategy-specific
policies are combined to form a Mixture-of-Experts model
[22]. When interacting with unseen human partners at test
time, the Mixture-of-Experts model adapts its belief over
strategies to the inferred strategy of the human partner.

A. Strategy Recognition

The collaborative strategy of a team is represented as
a single learned parameter, which determines how teams
order and interweave tasks between members. The robot’s
objective is to use observations to identify what strategies
exist that human teams may employ. We utilize data collected
in [4], containing observed trajectories of human-human
dyads in five kitchen environments, illustrated in Figure 2.

We frame identifying collaborative strategies from ob-
servations of teams as an unsupervised learning task of
recognizing patterns in the sequences of high-level tasks
performed by both players. The action space Ai consists
of 5 actions: {Move ×[North, South, West, East], Inter-
act}, where the Interact action encompasses all high-level
actions where the agent interacts with the environment by
picking up or placing objects. We translate environment
interactions into a set of 7 high-level actions (subtasks)
G = {g1, .., gm} ={Pick-up ×[Onion, Dish, Soup], Place
×[Onion, Dish, Soup], Serve Soup}. Using these sub-
task definitions, we construct an annotated dataset D =
{ξ1, .., ξM} of M team subtask trajectories. The sequence of
high-level actions performed by both players defines a team
i’s trajectory: ξi = {g11 , g21 , ..., g1t , g2t , .., g1T , g2T }i, where git
represents the subtask performed by player i at time t.

Since there are numerous subtask orderings that can define
possible team coordination strategies, to maintain a tractable
space of strategies to reason over, only orderings that differ
significantly should be classified as distinct strategies. MESH
learns a low-dimensional sequence representation of team
action sequences through a Hidden Markov Model (HMM).
HMMs are a formulation for learning probabilistic models
of linear sequences that allow a probability for a sequence
of observable events to be computed. The HMM is specified
by the following components:

1) The set of observations to the HMM is O =
{g11 , g21 , ..., g1t , g2t , .., g1T , g2T }ξi∈D, where the sequence
of observations is the sequence of high-level tasks
performed by both players.

2) X = {x1, x2, .., xN} represents a set of N hidden
states.

3) B = X×X is a transition probability from hidden state
xi to hidden state xj .

4) C = X × O is an emission probability from hidden
state xi to observation git.

The HMM takes as input the high-level subtask sequences
of each team in the dataset. Given these observations, the
Baum-Welch algorithm [23], an expectation-maximization
approach to learning HMM parameters, is used to learn the
transition matrices B and C. We next apply the Viterbi
algorithm [24] to compute the most likely hidden state
sequence for each sequence of observations, representing an
underlying temporal structure in the team action sequences.
Since the number of hidden states N is chosen to be less than
|G|, the hidden state sequence provides a low-dimensional
representation, x̄i = (x0, x1, ..., xN )ξi ∀ξi ∈ D of each
team’s observed sequence of subtasks. The sequences x̄i are
trimmed to length.

The discrete strategy z for each team is learned by
clustering over the low-dimensional sequence representation.
K-means clustering over the set of hidden-state sequences,
x̄i ∀ξi ∈ D, identifies teams that share the same strategy.
The final clusters define strategy classifications z ∈ Z.
We performed grid search over the number of strategy
clusters K and number of hidden states N , measuring the
silhouette score of each combination. Silhouette score [25]
evaluates clustering algorithms by comparing how similar
an element is to its own cluster (cohesion) compared to
other clusters (separation). We selected the combination of
number of hidden states and clusters achieving the highest
silhouette score to determine the strategy classification for
each environment (Figure 3).

B. Mixture-of-Experts Model

1) Apprenticeship Learning for Training Strategy-specific
Agents: Apprenticeship learning (AL) [26] is the task of
learning from expert demonstrations. In order to train agents
that employ particular strategies z ∈ Z, we employ the
apprenticeship learning algorithm outlined in [26], combined
with the Overcooked agent training approach introduced in
[4] (Algorithm 1). For each collaborative strategy zk ∈ Z,
we train a human proxy model fh

k to represent a partner
employing strategy zk. The human proxy model fh

k is
trained using behavioral cloning (BC) on all team trajectories
in aggregate with fine-tuning on the subset of trajectories
belonging to teams from the same strategy cluster zk. Next,
we learn the reward weights θk corresponding to strategy
zk using Maximum Entropy Inverse Reinforcement Learning
[27]. The reward features are: ϕ = {onion placed in empty
pot, onion placed in partially-filled pot, dish picked up, soup
picked up from pot, both pots full, soup served}. We construct
a policy library of strategy-specific agents, trained to employ
only their corresponding strategy. Using Proximal Policy
Optimization (PPO) [28], we compute the strategy-specific
optimal policy πk for the MDP using rewards R = θTk ϕ.
Under a similar training regime to [4], the policy πk is trained
with BC partner fh

k .
2) Adaptation of Human Partner Strategies: Leveraging

the notion of best response from game theory [29], the
adaptation task of the robot at test time is to match its
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Fig. 3: (Top Row) The strategy clusters for each environment are selected by taking the model achieving the highest silhouette score. Silhouette score
is more correlated with the number of hidden states than number of clusters. (Bottom Row) Training rewards for each strategy-specific policy and the
baseline. Strategy specific policies achieve varying rewards in training. The same training parameters were used as in the baseline [4] for fair comparison.

Algorithm 1 Apprenticeship Learning of Strategy-Specific
Policies

1: for Strategy k = 1, · · · , K do
2: Dk = {ξi : team i ∈ strategy cluster zk}
3: θθθk ← MAXENT IRL(Dk)
4: fh

k ← BEHAVIOR CLONING(Dk) {Train behavior
cloning human model}

5: πk ← PPO(θθθk, f
h
k ) {Compute agent policy using

PPO with BC human model partner.}
6: end for
7: STRATEGY-SPECIFIC POLICY LIBRARY = {π1, .., πK}

actions to a new partner’s strategy. The MESH agent uses
a discounted-memory Mixure-of-Experts (MOE) model [22]
to coordinate with the inferred strategy of the partner. The
strategy of the human partner is predicted based on how
well each of the candidate strategies in the policy library
predict the human’s behavior, with an emphasis on recent
human actions. The agent takes a weighted combination
over the action probability distributions proposed by each
strategy-specific policy. It selects the action with the highest
probability after the weighted voting. The next paragraph
details the mixture approach (Algorithm 2).

The strategy-specific robot policy library is {π1, .., πK},
where K is the number of strategies identified in the given
environment. πR

k indicates the policy employing strategy zk
at the position of the robot player. πH

k represents using the
strategy-specific robot policy πk, but taken from the position
of the human player. The policies map states to a distribution
over actions, which are normalized to form a probability
distribution. πR

k (ai|st) denotes a scalar valued probability
of action ai being taken by the robot in state st.

The strategy-specific policies are weighted by comparing
each policy’s predicted action to the true action taken by
the human. When the highest probability action predicted
by the strategy-specific policy is the action that the human

Algorithm 2 Online Strategy-Adaptive Mixture-of-Experts

1: STRATEGY POLICY LIBRARY = {π1, .., πK}
2: strategies = {z1, .., zK} ∈ Z
3: w0 = [ 1K , .., 1

K ]
4: for t = 1, · · · , T do
5: aRt = argmaxaj∈A

[∑K
k=1 π

R
k (aj |st)wk

t

]
6: Human partner takes action aHt

7: dkt =
t∑

j=1

γt−j max
ai∈A

πH
k (ai|st−j)− πH

k (aHt |st−j)

8: d̃kt =
dk
t∑

k

dk
t

9: wk
t+1 =

1−d̃k
t∑

k

1−d̃k
t

10: end for

took, this difference is 0, since maxai∈A πH
k (ai|st−j)] =

πH
k (aHt |st−j). Thus, dkt =

∑t
j=1 γ

j maxai∈A πH
k (ai|st−j)−

πH
k (aHt |st−j) is a measure of how inaccurately the robot’s

human model represents the human’s actions. The higher dkt ,
the worse the human model. d̃kt is the normalized value of dkt
over strategies. The belief weights over strategies, wt, are the
normalized, inverted d̃kt values. The belief model sees only
the actions taken by the human partner and does not have
access to a true human model. Assuming that the human is
sampling from some unknown true human distribution, the
expected action taken by the human is maximum likelihood
action under their true, but unknown, policy. Because of
this limited fidelity feedback from the human, we evaluate
the maximum probability predicted human actions of each
strategy policy. The γ factor represents a discounted memory
factor, which prioritizes recent human actions, allowing the
likely strategy of a player to shift as the episode progresses.

V. SIMULATION RESULTS

We first compare the MESH agent to the baseline by
evaluating the performance of both agents with a human



Fig. 4: The MESH agent generally outperforms the Baseline model while
collaborating with the human-(ALL) proxy model, except for in one position
in the Forced Coordination and Asymmetric Advantage environments. The
number of orders is averaged over 25 simulated games. The error bars
represent standard deviation.

proxy model trained using behavioral-cloning over all teams
in the dataset. We refer this model the human-(ALL) proxy
model. Switched indices (SwitchInd) refers to swapping
the agent and human player positions. The MESH agent
outperforms the Baseline agent in both player positions for
four out of five environments. In Forced Coordination, the
MESH agent outperforms on one position, while performing
worse relative to the Baseline in the other position (Fig 4).

VI. USER STUDY

We ran a user study to compare collaboration of human
partners with the MESH agent and a baseline agent that
was trained using PPO with a single behaviorally-cloned hu-
man partner [4]. Each participant performed a collaborative
cooking task with both the MESH agent, and the Baseline
agent. The study was a 5×2 within-subjects design. The first
repeated variable was (1) Kitchen Environment, of which
there were 5 levels (layouts: [Cramped Room, Coordination
Ring, Asymmetric Advantages, Counter Circuit, Forced Co-
ordination]). The second repeated manipulated variable was
(2) agent adaptability, which consisted of two types: MESH
agent (adaptive), and (2) Baseline agent trained with PPO
with a behaviorally-cloned human proxy (non-adaptive). The
MESH Agent is adaptive since it is trained to imitate different
strategies learned from observing human teams, allowing it
to adapt its mixture policy to the strategy it believes the
human partner is playing.

Participants were given a scaffolded training task to fa-
miliarize themselves with the online game’s controls. Next,
participants played all 5 environments of Overcooked with
each of the two agents, for a total of 10 rounds. Each round
is 60 seconds. The 5 environments were played sequentially,
meaning that for each environment, participants will play
with one type of agent, followed by the other, before moving
onto the next environment. The order of environments and
the order in which agents were presented was counterbal-
anced. We compared the two team compositions (human-
MESH, human-Baseline) on task performance and collabora-
tive fluency. Collaborative fluency (CF) [30] is defined as the
coordination of joint activities by members in a team. After
each round, the participant rated the collaborative fluency
of the team. Between environments, after playing with both

agents, participants evaluated which agent they preferred.

A. Hypotheses

We hypothesize that participants collaborating with the
MESH agent will demonstrate better task performance and
higher collaborative fluency, measured through subjective
and objective measures.
H1: Participants will perform better on the cooking task by

serving more dishes when paired with MESH.
H2: Participants will prefer to team with MESH agents.
H3: Teams with MESH agents will exhibit higher collabo-

rative fluency, measured through objective measures of
idle time, concurrent activity, and functional delay.

H4: Teams with MESH agents will self-report higher sub-
jective team collaborative fluency.

B. Measures

As we seek to develop a more collaborative agent, col-
laborative fluency metrics measure how effective an agent is
at coordinating its behavior with its human partner. While
fluency measures do not always directly correlate with task
efficiency, they can change people’s perception of collabora-
tion.

1) Task Performance: Task performance is measured by
the number of orders served by a team.

2) Preference: After each kitchen environment was
played, participants were asked to select their preferred
partner.

3) Objective Collaborative Fluency: Participant trials
were analyzed and 3 objective fluency measures were com-
puted (in seconds): (1) human idle time, (2) robot idle time,
and (3) concurrent activity [30].

4) Subjective Collaborative Fluency: Participants are
asked 5-point Likert scale questions rating the team’s fluency,
fluency over time, the agent’s ability to understand the
actions of the participant, and the predictability of the agent’s
actions.

• Partner X and I coordinated our actions well together.
• Partner X and I coordinated our actions better as the

episode progressed.
• Partner X perceived accurately what tasks I was trying

to accomplish.
• I was able to understand and predict what tasks Partner

X was trying to accomplish.
We measured alignment between responses to these ques-
tions (Chronbach’s α = 0.92 [31]), and the values were
added into a single subjective fluency score.

VII. RESULTS

We collected data from 148 Prolific [32] workers over
the age of 18. We removed 19 participants who did not
complete the study or whose data was saved improperly and
4 participants who performed fewer than 10 keypresses in
1 or more trials (indicating deliberate lack of participation),
resulting in 125 total participants. The keypress threshold
was selected at 3 standard deviations away from the mean
after skew adjustment with a square-root transform. We



analyzed all numerical data using a two-way repeated mea-
sures ANOVA followed by post-hoc pairwise analyses with
Bonferroni correction for multiple comparisons. Mauchly’s
test of sphericity was performed on the data for each mea-
sure, and Greenhouse-Geisser correction was applied for the
ANOVA if the sphericity assumption was not met. In the
following graphs, ∗ denotes significance at α = 0.05, and ∗∗
denotes significance at α = 0.01. 58.4% of the participants
self-identified as female, 40.0% as male, and 1.6% as trans-
gender, non-binary, or other. Participant ages ranged from 18
to 70 (M = 27.98, SD = 8.61). The recruitment procedure and
study were approved by our Institutional Review Board. The
study and hypotheses were pre-registered on Open Science
Framework (10.17605/OSF.IO/JFW7T).

1) Task Performance: H1 is only supported for the
Cramped Room and Forced Coordination environments (Fig
5). In these layouts, participants served significantly more
orders when paired with the MESH model over the Baseline
model. For the other three environments, no significant
difference between agents was observed. A two-way repeated
measures ANOVA found that was a significant main effect of
agent type on score (F (1, 124) = 23.285, p < 0.001, η2 =
0.158), where participants scored higher with the MESH
agent over the baseline. There was a significant interaction
between the layout and agent type, (F (3.46, 428.51) =
8.275, p < 0.001, η2 = 0.063). Post hoc testing with Bonfer-
roni correction showed that for Cramped Room (p = 0.009)
and Forced Coordination (p < 0.001), there was a significant
increase in number of orders served with the MESH agent.

2) Preference: H2 is only supported for the Forced Coor-
dination environment. Agent preferences between the MESH
and Baseline agents were queried via a forced choice pref-
erence question for each environment. A Chi-Squared Test
measured the direction of participant preferences between
agent types by comparing preferences against a uniform dis-
tribution. People preferred MESH for Forced Coordination:
(χ2 = 17.67, p < 0.001). The baseline was preferred for
Coordination Ring: (χ2 = 8.712, p = 0.003). The other
environments did not exhibit significant differences.

3) Objective Collaborative Fluency: Idle Time and Con-
current Activity: H3 is supported in the majority of environ-

*

*

Fig. 5: Scores of human-MESH teams increased in Cramped Room and
Forced Coordination environments. No significant difference was found in
the other three environments.

* **

** **

Fig. 6: Concurrent activity between human and robot partner was increased
with MESH for four of five environments.

ments in concurrent activity and robot idle time. There was a
significant main effect of agent type on the team concurrent
activity (F (1, 124) = 123.846, p < 0.001, η2 = 0.500),
where human-MESH teams displayed higher concurrent ac-
tivity. There was a significant interaction between the layout
and agent type on concurrent activity, (F (2.611, 323.762) =
27.983, p < 0.001, η2 = 0.184). Post hoc testing with
Bonferroni correction showed that for Cramped Room (p =
0.018), Asymmetric Advantages (p < 0.001), Counter Cir-
cuit (p = 0.004), and Forced Coordination (p < 0.001),
there was a significant increase in concurrent activity with
the MESH agent (Fig 6).

The results demonstrated a significant main effect of agent
type on the robot idle time (F (1, 124) = 144.604, p <
0.001, η2 = 0.538), where human-MESH teams generally
experienced lower robot idle time. There was a significant
interaction between the layout and agent type on robot idle
time, (F (2.883, 357.535) = 28.523, p < 0.001, η2 = 0.187).
For Cramped Room (p < 0.001), Asymmetric Advantages
(p < 0.001), Coordination Ring (p = 0.047), Counter Circuit
(p < 0.001), and Forced Coordination (p < 0.001), robot idle
time significantly decreased with the MESH agent (Fig 7).

We found a significant main effect of agent type on the hu-
man idle time (F (1, 124) = 64.700, p < 0.001, η2 = 0.343),
where human-MESH teams experienced lower human idle
time generally. There was no significant interaction between
the layout and agent type on idle time (F (2.714, 336.545) =
2.538, p = 0.063, η2 = 0.020).

** ** * ** **

Fig. 7: Participants pairing with MESH agent saw decreased in robot idle
time in all environments.



**** **

Fig. 8: Subjective collaborative fluency aggregated over the four measures
was higher with MESH in three environments, with comparable numbers
in the other two environments.

4) Subjective Collaborative Fluency.: H4 is supported in
the majority of environments. In the Cramped Room, Asym-
metric Advantages, and Forced Coordination environment,
participants rated the collaborative fluency of the interaction
significantly higher when paired with the MESH model over
the Baseline model (Fig 8). There was a significant main
effect of agent type on the aggregate subjective fluency
measure (F (1, 124) = 23.693, p < 0.001, η2 = 0.160),
and a significant interaction between the layout and agent
type (F (4, 496) = 12.294, p < 0.001, η2 = 0.090). Post hoc
testing with Bonferroni correction showed that for Cramped
Room (p = 0.001), Asymmetric Advantages (p = 0.002)
and Forced Coordination (p < 0.001), there was a significant
increase in self-reported interaction fluency ratings with the
MESH agent (Fig 8).

VIII. DISCUSSION

Our results show that an agent designed for coordination
on strategy may often positively impact task performance
and collaborative fluency of human-robot teams. The benefits
to task performance and fluency are exhibited in some, but
not all, environments. Human-MESH teams outperformed
human-Baseline teams in two environments: Cramped Room
and Forced Coordination. The the other three environments
did not exhibit significant differences in task performance be-
tween agents. In the three environments without performance
improvement, the MESH algorithm for learning strategy-
specific policies likely resulted in behavior similar to the
baseline approach. The IRL reward learning under the set
of predefined features may not have resulted in significantly
different learned rewards for each strategy, causing the agents
trained using the learned reward features to display similar
behavior to the aggregate human model baseline.

Participants did not show strong preferences for either
of the two agents, despite achieving higher score with
the MESH agent. This result suggests that the differences
between the two agents may have been too subtle to perceive.
Agent behavior under a given strategy may not be identifiable
from all states, but rather a subset of particular states. The
policies trained on learned reward weights may have led to
behavior similar across strategies and to the baseline for
many states, leading to agent behavior that was not easily
distinguishable by participants.

While task efficiency is one measure of agent perfor-
mance, collaborative fluency can provide insight into the

ability of human-robot teams to coordinate their actions
on shared tasks. The interaction with MESH saw higher
concurrent activity between the agent and human partner (4
of 5 environments), as well as lower agent idle time (all
environments). Participants teaming with the MESH agent
also generally experienced lower human idle time; however,
since there was no significant interaction between layout and
agent type, we did not perform post-hoc analyses on which
environments this particularly occurred in. These measures
of objective collaborative fluency are related: human and
robot idle time influence the amount of concurrent activity.
Participants perceived higher collaborative fluency in their
interactions with the MESH agent in a majority (3 out of 5)
of environments. The other two environments, Coordination
Ring and Counter Circuit, which did not report higher sub-
jective fluency, were also among the environments where the
MESH agent did not improve task performance. This further
suggests that there was not significant difference in agent
behavior between strategy-specific policies and the baseline
policy. Our results demonstrate that having an agent coordi-
nate on collaborative strategy with a new human partner can
offer potential benefits in task performance and collaborative
fluency, but the effectiveness varies across environments. The
MESH framework for training coordination agents does not
underperform compared to the baseline in any environments,
suggesting that developing an agent capable of coordinating
with different behavioral strategies in human data can assist
in better leveraging limited demonstrations.

A key assumption of MESH is that a team that adopts
the same strategy will perform better than a team that
doesn’t. While our study demonstrates that strategy coordi-
nation benefits performance and team fluency, there do exist
scenarios in which this is not true: it is possible that two
different task strategies may be complimentary, and the best
response of a robot partner is to employ a complimentary,
not identical, approach. We ran a simulated experiment
comparing the performance of our strategy-specific policies
with each other, and found that there were cases where teams
of matching strategies performed worse than non-matching
teams, illustrating an example of when direct matching may
not be ideal. We additionally assume that the dataset of team
observations contains a representative sample of varying
team strategies from which we can learn a reasonable library
of policies. Under this assumption, by strategically focusing
agent training on a subset of the data, we can construct
strategy-specific agent policies.

This work represents a step towards developing collabo-
rative agents capable of coordinating their task approaches
with human partners. As data gathered about human behavior
in different collaboration contexts must increase for better
trained agents, this approach provides a candidate unsuper-
vised approach for training agents with an understanding of
human strategies and an ability to coordinate with learned,
emergent strategies. In future work, we aim to consider
alternative reward features, that may more strongly represent
differences between strategies, and compare our method to
planning-based approaches and approaches that infer the



intentions of the human partner.

IX. CONCLUSION

Coordination of joint actions between humans and robots
is required for effective collaboration. We employ a notion
of collaborative strategies as approaches teams take towards
interweaving team members’ actions in performing a shared
task. In particular, agents must coordinate their strategies
for approaching joint goals in order to facilitate fluent team
collaboration. This ability to adapt necessitates the agent first
identify existing collaborative strategies and learn policies
that employ each strategy. In this work, we develop MESH:
a computational framework for learning human collaborative
strategies and training an agent with the ability to adapt to
the strategies of unseen human partners. An unsupervised
clustering-based approach is used for recognizing different
teaming patterns from human data. We leverage the learned
clusters to train a library of different policies that perform
distinct collaborative strategies. We use the identified strate-
gies to construct a Mixture-of-Experts model that adapts
to unseen human partners. Results of our user study find
that the MESH agent offers higher objective and subjective
collaborative fluency over an existing baseline. We see this
work as an investigation towards designing robot behavior
that reasons about how different task-completion strategies
interplay with those of other team members.
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C. Brandl, and C. Schlick, “Assistive robots in eldercare and daily
living: Automation of individual services for senior citizens,” in
International Conference on Intelligent Robotics and Applications.
Springer, 2011, pp. 542–552.

[2] H. S. Koppula, A. Jain, and A. Saxena, “Anticipatory planning for
human-robot teams,” in Experimental robotics. Springer, 2016, pp.
453–470.

[3] R. Aumann and S. Sorin, “Cooperation and bounded recall,” Games
and Economic Behavior, vol. 1, no. 1, pp. 5–39, 1989.

[4] M. Carroll, R. Shah, M. K. Ho, T. Griffiths, S. Seshia, P. Abbeel, and
A. Dragan, “On the utility of learning about humans for human-ai
coordination,” Advances in Neural Information Processing Systems,
vol. 32, pp. 5174–5185, 2019.

[5] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Cali-
brating probability with undersampling for unbalanced classification,”
in 2015 IEEE Symposium Series on Computational Intelligence, 2015,
pp. 159–166.

[6] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the Twenty-First International
Conference on Machine Learning, ser. ICML ’04. New York, NY,
USA: Association for Computing Machinery, 2004, p. 1.

[7] S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone, “Making friends on
the fly,” Artif. Intell., vol. 242, no. C, p. 132–171, jan 2017. [Online].
Available: https://doi.org/10.1016/j.artint.2016.10.005

[8] A. Dafoe, E. Hughes, Y. Bachrach, T. Collins, K. R. McKee, J. Z.
Leibo, K. Larson, and T. Graepel, “Open problems in cooperative ai,”
2020.

[9] N. Agmon, S. Barrett, and P. Stone, “Modeling uncertainty in leading
ad hoc teams,” in International Conference on Autonomous Agents
and Multi-Agent Systems, Richland, SC, 2014, p. 397–404.

[10] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein, “Ad
hoc autonomous agent teams: collaboration without pre-coordination,”
in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, ser. AAAI’10. AAAI Press, pp. 1504–1509.

[11] B. Cui, H. Hu, L. Pineda, and J. Foerster, “K-level reasoning for
zero-shot coordination in hanabi,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[12] H. Hu, A. Lerer, A. Peysakhovich, and J. Foerster, ““other-play”
for zero-shot coordination,” in International Conference on Machine
Learning. PMLR, 2020, pp. 4399–4410.

[13] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F.
Song, E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning,
S. Mourad, H. Larochelle, M. G. Bellemare, and M. Bowling, “The
hanabi challenge: A new frontier for ai research,” Artificial Intelli-
gence, vol. 280, p. 103216, 2020.

[14] D. Strouse, K. McKee, M. Botvinick, E. Hughes, and R. Everett,
“Collaborating with humans without human data,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[15] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III, “Opponent
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