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A B S T R A C T

Rapid growth in the reliance on teamwork in organizations, coupled with advances in artificial intelligence,
has fueled increased use of Human Autonomy Teams (HATs) involving the collaboration of humans and
agents to complete work. Although there are many successful examples of HATs, researchers and technology
developers can see additional applications if agents were better able to understand the mental states of humans
to anticipate what a team is likely to do next. Creating this capability requires the creation of models of team
interaction that enable agents to interpret a team’s current state and anticipate its future state. To build this
model, we draw on research on collective intelligence (CI), which shows a team’s capability to work together
can be characterized by a latent collective intelligence factor, based on observations of work across a range of
tasks, and which predicts a team’s ability to accomplish a wide range of goals in the future. While some work
uses a specific battery of CI tasks, more recent studies have identified observable collaborative process metrics
that can be captured passively. Building on this work, we propose a method of evaluating CI by representing it
as a latent variable represented by the hidden state in a Hidden Markov Model. The observations used as input
to the model are the team’s observable collaborative process behaviors (i.e., collective effort, use of task-related
skills, and task-strategy efficiency). We show by learning the set of hidden states representing a team’s observed
collaborative process behaviors over time, we both learn information about the team’s CI, predict how CI will
evolve in the future, and suggest when an agent might intervene to improve team performance. Based on the
model’s observations, we discuss how it can help agents diagnose teamwork and possibly make interventions
to improve CI by identifying areas of collaborative process (collective effort, skill use, or task strategy) that
could be improved.
1. Introduction

During the past decade, rapid advances in computational science
and artificial intelligence (AI) have given rise to human autonomy teams
(HATs), or teams that involve at least one human working interdepen-
dently with at least one agent. In HATs, an agent is a computational
subsystem partially or completely autonomous with respect to some
aspect of collective activity, such as completing tasks, making decisions,
or communicating information (Demir et al., 2016; O’Neill et al.,
2020). While literature on human–computer interaction, including in
HATs, has examined how humans respond to AI teammates (Glikson
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& Woolley, 2020; Musick et al., 2021), there is increasing recognition
that humans and agents in HATs need to develop shared cognition to
be successfully collaborative (Schelble et al., 2022; Wiltshire et al.,
2017). Such shared cognition requires agents to understand individual
human mental states and predict their future behavior. Even further, to
operate as a full collaborator in an HAT, an agent needs to understand
the team’s current collaboration state, and accurately predict future
states in order to anticipate opportunities to contribute or intervene
to improve collaboration.
vailable online 18 October 2022
747-5632/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.chb.2022.107524
Received 3 June 2022; Received in revised form 16 September 2022; Accepted 9 O
ctober 2022

http://www.elsevier.com/locate/comphumbeh
http://www.elsevier.com/locate/comphumbeh
mailto:mzhao2@andrew.cmu.edu
mailto:feadeh@seattleu.edu
https://doi.org/10.1016/j.chb.2022.107524
https://doi.org/10.1016/j.chb.2022.107524
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2022.107524&domain=pdf


Computers in Human Behavior 139 (2023) 107524M. Zhao et al.

d
f
i
a
i
p
s
a
o
a
i
2
a
s
i
u
t
o

t
m
H
p
i
2
f
2
a
a
‘
u
g
‘
n
f
s
u
i
2
p
m
s
p
m

u
C
o
t
s
t
s
w
d
c
t
o
r

Recent work on collective intelligence (CI) provides a foundation for
modeling collaborative states in HATs. Research on CI in human teams
has identified a single latent statistical factor to describe the ability
of a team to work together on a variety of tasks (Riedl et al., 2021;
Woolley et al., 2010). To measure team CI, many existing studies use
a performance-based measure calculated on the basis of teams’ scores
on a specific set of collective tasks. The resulting CI scores have been
shown to predict future performance in a variety of teams and settings,
including software programmers, student course project teams, online
multiplayer video games, military crews, and management consul-
tants (Engel et al., 2015; Kim et al., 2017; Riedl et al., 2021; Woolley &
Aggarwal, 2020). More recently, researchers have identified observable
metrics of collaborative processes that are significant predictors of CI,
and can be treated as alternative measures which can be captured as
teams work on almost any task, allowing unobtrusive and ongoing
measurement of CI (Gupta et al., 2019; Riedl et al., 2021). The ability
to track a real-time measure of CI opens the possibility for an agent to
gauge a team’s CI and potentially identify opportunities to intervene to
improve it. While extant work has shown that collective intelligence
remains relatively stable in teams in the absence of major interven-
tions (Woolley et al., 2015), other work illustrates how interjecting
technological tools and even autonomous teammates into a team can
alter team design and the basic inputs into collective intelligence, lead-
ing to improvement (Glikson & Woolley, 2020; Glikson et al., 2019). As
the capabilities of autonomous teammates develop further, for instance
by picking up on cues related to team member mental states such as
beliefs, goals, or emotions, they will likely become even more effective
at intervening to improve team collaboration (Eadeh et al., 2022; Gupta
et al., 2019). A real-time indicator of a team’s collective intelligence
also provides the possibility to model CI dynamically to explore how CI
changes over time and how those changes signal future performance.

To explore the potential for agents to accurately detect a team’s
level of collective intelligence, we developed a Hidden Markov model
(Rabiner, 1989; Schuster-Böckler & Bateman, 2007) to capture a team’s
current state of CI and to predict its future state. Just as traditional
psychometric approaches use measured or observed variables to esti-
mate latent factors (as has been done using factor analyses of team
task scores to estimate CI in prior work), HMM also uses measures of
observable behaviors to estimate a latent or hidden ‘‘state’’ or factor
theorized to be the underlying driver of the observable behavior (Ra-
biner, 1989). However, while traditional factor analytic methods do
not incorporate consideration of temporal sequences or changes in
an underlying state over time, the task of HMMs is to find, given
an observed sequence of behavior, a representation of the current
‘‘hidden’’ state and the probability of a future state in the next phase
across a range of possibilities (Maruotti, 2011). HMMs are applied in
many fields where the goal is to identify the influence of latent or
hidden states based on observable data and to predict future states as
they unfold sequentially across stages over time (Anderson et al., 2016;
Kelley et al., 2008).

To develop our HMM, we first collected data from a study in which
human participants played a search and rescue game over the internet
with a pre-scripted agent. We use the data from these HATs to train
a Hidden Markov model to capture the team’s latent (or hidden) CI
state based on observable behaviors in one phase of the game and to
predict the team’s future state in the next phase. We find our model
achieves a fairly high level of accuracy in predicting the future CI state
of HATs based on teams’ observable collaborative process behavior.
We then compare this model to other models, including a regression-
based model and a multilayer perceptron model. We find that our
HMM showed similar predictive ability to these comparison models. We
discuss our results by considering ways in which agents might use such
models to anticipate human behavior and adapt their own accordingly,
including the possibility of identifying opportunities to intervene and
2

improve the collective intelligence of HATs. p
2. Related Work on Collective Intelligence

For several decades, a widely held perspective in teams concerned
the articulation of the different ways that any team would need to
coordinate to perform different types of tasks (such as creativity tasks
versus decision-making tasks), with little consideration of the features
of a particular team that would enable it to perform well on many
ifferent types of tasks (McGrath, 1984; Steiner, 1972). As a departure
rom and complement to that perspective, extant work on collective
ntelligence in teams (Woolley et al., 2010) investigated whether there
re some groups that can consistently perform better than others and,
f so, whether a measure of that capability would predict the future
erformance of the team. Across a number of different studies, re-
earchers have observed evidence of a single latent factor that captures

team’s collective intelligence, which is based on a factor analysis
f scores from a team’s performance on a number of different tasks
nd which can be used to predict the performance of the same team
n the future (Engel et al., 2015; Riedl et al., 2021; Woolley et al.,
010). While the early body of work in this area focused on capturing
team’s CI based on their performance on a specific battery of tasks,

imilar to an intelligence test for individuals, more recent work has
dentified observable collaborative process behaviors which can be
nobtrusively captured as groups work on many different types of
asks or projects, and are strong predictors of standardized measures
f collective intelligence (Gupta et al., 2019; Riedl et al., 2021).

In this work, we will extend these approaches to measuring collec-
ive intelligence to further explore ways that an algorithmic teammate
ight model and predict a team’s CI based on observations over time.
idden Markov models (HMMs) are a method for modeling sequential
henomena and have been widely applied in natural language process-
ng (Dethlefs & Cuayáhuitl, 2011) and gene sequence analysis (Yoon,
009). Other applications of HMMs are common in computational
inance (Mamon & Elliott, 2007), machine translation (Wang et al.,
018), activity recognition (Trabelsi et al., 2013), and speech gener-
tion (Dethlefs & Cuayáhuitl, 2011). HMMs handle data represented
s sequences of observations over time. The data are modeled as
‘observed’’ outputs which are theorized to have been generated by an
nobserved, or ‘‘hidden,’’ internal state. The task of HMMs is to find,
iven an observed sequence of behavior, a representation of the current
‘hidden’’ state and the probability of the group’s future state in the
ext phase across a range of possibilities. HMMs are applied in many
ields where the goal is to identify the influence of latent or hidden
tates based on observable data and to predict future states as they
nfold sequentially across stages over time. HMMs have been applied
n prior research to human problem-solving (Anderson & Fincham,
013), design processes (McComb et al., 2017), and human information
rocessing (Borst & Anderson, 2015). Using an HMM, Anderson (2011)
odels algebraic problem solving in the context of intelligent tutoring

ystems, and uses the model to predict what next problem-solving step
articipants will take. In a similar vein, we use our model to predict
etrics of collaborative process in the next timestep.

When considering good candidates for observable behaviors to be
sed in an HMM analysis in order to model a group’s current level of
I as well as predict its level in the next stage, we build on the work
f Riedl et al. (2021). In their meta-analysis of more than 1300 teams,
he researchers identified three collaborative process behaviors that are
trong correlates of CI in teams: the level of collective effort of a team,
he efficiency of a team’s task strategy, and its use of the knowledge and
kill of members. These behaviors have been identified in the classic
ork on team effectiveness (Hackman, 1987) as key process criteria to
iagnose the quality of teamwork. The collective effort of a team can be
aptured by the overall level of activity of members and serves to signal
he level of motivation and engagement of the team. The efficiency
f a team’s task strategy is captured by how effectively they use a
esource, such as time and member attention, to complete work at a

roductive rate with a high level of quality. The use of knowledge and
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skill captures the degree to which a team is capitalizing on members’
knowledge skills and abilities by allocating the right tasks to members
with the highest relevant skill and maximizing the amount of time
members spend working on tasks that use their unique skills. When
teams collaborate in digital environments, it is often possible to design
measures to capture these behaviors of the collaborative process and
use them to predict performance (Gupta et al., 2019). In this study,
we propose to use HMMs in the sequence of observed collaborative
process metrics in teams playing an online search and rescue game to
model the evolution of collective intelligence of a group, a latent factor
influencing the behavior of the team. We use learned HMMs to predict
the team’s CI in future time steps, which could allow an algorithmic
teammate to potentially intervene in a team struggling.

3. Method

Agents designed for collaborating in HATs must be able to judge
how well a team is collaborating and anticipate what it might do
next in order to operate as collaborative team members. Observable
indicators of the quality of collaborative team processes that have
been shown to predict collective intelligence include the appropriate
team member skill use, the efficiency of task strategy, and the level
of collective effort (Riedl et al., 2021). Extant work has shown that
aggregate values of these processes predict future team behavior and
performance in a variety of tasks and contexts, including search and
rescue tasks (Eadeh et al., 2022), and interventions to improve targeted
collaborative processes by automated agents can produce significant
improvement in team CI (Gupta et al., 2019). We explore a method of
interpreting and utilizing learned transition matrices to predict future
CI states, which can help agents in HATs anticipate team behavior
and perhaps decide when intervening in some way to improve team
process could be helpful. After evaluating initial models trained with
collaborative process metrics, we compare this model to other alterna-
tive models to see if HMM predictions improve the ability of agents
to predict the trajectory of CI in a group and inform decisions about
possible interventions.

3.1. Participants and design

We recruited 192 participants from Prolific.co, an online platform,
to play a search and rescue game developed by Nguyen and Gonzalez
(2022) called Minimap (see Fig. 1). Participants were assigned to a
team with an ostensible teammate (in reality a pre-programmed agent,
heretofore referred to as the ‘‘teammate’’), who played on the same
two-dimensional map as the actual participant. The field of view of
the participants in the game was limited to a diameter of five squares
around them, so they could not see much of the map except for a dot
associated with their ‘‘teammate’s’’ location.

Participants earned points for their team by rescuing victims that
were worth either 10 or 20 points each. The total number of points
the participant and their teammate earned during the two round of the
game determined the team’s bonus payment.

Beyond their own work in finding and saving victims, participants
could also collaborate with their teammate in a number of ways,
including identifying to their teammate the location of special victims
only the teammate could save, communicating whether a specific lo-
cation was ‘‘cleared’’ of victims, and activating gift boxes that would
directly contribute to the bonus of teammates. These collaborative
teamwork behaviors provided important input for our collaborative
process metrics.
3

3.2. Measures

Collaborative process metrics. In modeling and predicting latent CI
states for human agent teams, we use the set of collaborative process
metrics identified in existing research predicting collective intelli-
gence (Gupta et al., 2019; Riedl et al., 2021). Collaborative process
metrics are computed at 30-second intervals throughout the first of the
two 5-minute search and rescue missions. In the context of the Search
and Rescue task, we had interval 𝑡 denote minute 𝑖 to 𝑖 + 30 seconds,
and 𝑃 = {1, 2} denote the set of teammates (one human, one agent),
where |𝑃 | is the total number of team members. We computed three
collaborative process measures of effort, skill usage, and task strategy.
Then, we operationalized the metrics as follows:

Effort was calculated as the total distance traveled by all HAT
members.

Effort at interval 𝑡 = 𝐸𝑡 =
|𝑃 |
∑

𝑝=1

[𝑖+30
∑

ℎ=𝑖

√

(𝑥ℎ−1 − 𝑥ℎ)2 + (𝑦ℎ−1 − 𝑦ℎ)2
]

(1)

here a player’s position in second ℎ is represented as (𝑥ℎ, 𝑦ℎ). We
ompute the 𝐿2 distance between the player’s location in the current
econd and in the previous second. Effort is summed across both human
nd agent teammates.
Skill use was calculated as the number of messages communicated

y each participant to their partner as a means of directing partner
ttention to tasks that were complete versus incomplete, as well as
hose they were uniquely equipped to handle. For instance, in the
earch and Rescue mission, some victims could only be triaged by
he agent-based teammate, while others could only be triaged by the
articipants. Therefore, making each other aware of where their skills
ere needed was interpreted as an indicator of managing team skill
se.

kill Usage at interval 𝑡 = 𝑈 𝑡

=
|𝑃 |
∑

𝑝=1

[𝑖+30
∑

ℎ=𝑖
Number of messages sent by player 𝑝 via chat at second ℎ

]

(2)

Task Strategy, or the efficiency of the team’s coordination, is defined
s the rate of progress throughout the task, here calculated as the
umber of victims triaged at each point in time.

ask Strategy (task progress) at interval 𝑡 = 𝑆𝑡

=
|𝑃 |
∑

𝑝=1

[𝑖+30
∑

ℎ=𝑖
Number of victims triaged by player 𝑝 at second ℎ

]

(3)

or each human-agent team, we compute the three process metrics of
kill, effort, and strategy every 30 seconds, resulting in 10 measure-
ents throughout a 5-minute Search and Rescue mission. These serve

s observations for the HMM (Fig. 2).

. Analytic approach

.1. Hidden Markov Models

Hidden Markov Models (HMMs) are a formulation for learning
robabilistic models of linear sequences. HMMs model a sequence
f observed data as a series of outputs generated by a sequence of
idden, internal states. The observations are modeled as the output
f a discrete stochastic process Observed events are often explained
y hidden related variables. For example, in medical diagnosis, an
llness that is classified as a ‘‘syndrome’’ is essentially a hidden state
hat is believed to be the underlying variable or driver of a set of
ymptoms. Consequently, when a patient is exhibiting a subset of
elated symptoms or experiences a change in symptoms, prediction
f what might happen next is made easier by understanding their
elationship to the hidden internal state or ‘‘syndrome’’. The process
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Fig. 1. Overview of the search and rescue game in Minimap. Note that participants had a field of view of only five squares at a time.
Fig. 2. Observations of process metrics. The metrics are shown for Team 1 as an example.
of identifying a medical syndrome and how it evolves over time can
involve the development of models such as HMM. To develop or train
the model, a variety of unstructured or semi-structured data are used
as inputs (such as symptoms) from which the model derives semantic
meaning by identifying connections which are conceptualized to rep-
resent underlying internal or hidden states based on patterns in how
variables change over time. While the series of internal states is hidden,
the model identifies the sequence of internal states (such as stages of an
illness) that probabilistically generates a sequence of observations. The
underlying process for hidden states is assumed to behave as a Markov
process (Miller, 2001).

The state transition probability is the probability of moving from
one hidden, internal state to another. The emission probabilities govern
how observations (emissions) are generated from a particular hidden
state. Learning the parameters of an HMM, given a set of sequences
of observation, entails learning the state transition probabilities and
emission probabilities. The probability of any sequence can then be
computed by multiplying the state transition and emission probabilities
for each entry in the sequence.

By using an HMM, we aim to model CI as a hidden temporal process
that influences the sequence of observable team process metrics over
time (i.e., skill use, task strategy, effort). In other words, a team’s collec-
tive intelligence is a hidden state that is theorized to cause observable
changes in team process metrics. Because of the theorized relationship
between CI and the observable team process metrics we measure, we
use measures of team process metrics as input observations to the HMM
in order to encourage the HMM to represent notions of CI in the latent
states. Although the hidden states may capture a number of latent
attributes, we aim to gain a semantic understanding of hidden states
by investigating what emissions are most probable from each hidden
state. Emissions with process metric values that total a higher sum
indicate that effort, task strategy, and skill use are higher on average.
Given the relationship between CI and these process metrics (Gupta
et al., 2019; Riedl et al., 2021), such a hidden state with above-average
process metrics may be associated with greater CI than a hidden state
with below-average process metrics. This allows us to loosely interpret
internal states along some dimension of CI, based on probable emission
4

values. In this way, the HMM formulation allows us to incorporate
temporal information on how CI develops dynamically, and model CI
as a dynamic, unobserved temporal process underlying the way in
which a team’s collaborative process metrics evolve over time. The
HMM model provides insights that traditional auto-regressive models
cannot by modeling the latent temporal process of CI from the sequential
observations of team collaborative process metrics and representing
how both change over time.

We model collective intelligence as a latent (hidden) state related
to observed collaborative process metrics through an HMM. Our HMM
is specified by the following components:

1. 𝑋 = {𝑥1, 𝑥2, .., 𝑥𝑁} represents the state space, a set of 𝑁 possible
hidden states.

2. 𝑂 = {𝑜1, 𝑜2, .., 𝑜𝐾} represents the observation space, a set of 𝐾
possible observations.

3. 𝐴 = 𝑋 × 𝑋 is a transition probability from hidden state 𝑥𝑖 to
hidden state 𝑥𝑗 . In our HMM formulation, we consider tran-
sitions between hidden states as occurring between timesteps.
𝐴𝑖𝑗 = P(𝑥𝑡+1 = 𝑥𝑗 |𝑥𝑡 = 𝑥𝑖).

4. 𝐵 = 𝑋 × 𝑂 is a transition probability from hidden state 𝑥𝑖 to
observation 𝑜𝑘. 𝐵𝑖𝑘 = P(𝑜𝑡 = 𝑜𝑘|𝑥𝑡 = 𝑥𝑖).

5. 𝑝0 is an initial probability distribution over hidden states.

The HMM relies on the Markov assumption, which assumes that, in
order to make a prediction on a future outcome, all that is needed
is information about the current state. The states before the current
state have no influence on the future outcomes. The Markov assumption
states that 𝑃 (𝑥𝑖 = 𝑐|𝑥1,… , 𝑥𝑖−1) = 𝑃 (𝑥𝑖 = 𝑐|𝑥𝑖−1).

4.2. Data processing

First, we process the study data in order to define discrete-time
sequences of observations, over which to train an HMM. Training
an HMM on unsupervised observed time series entails learning the
transition dynamics. The transitions from hidden state to hidden state

and from hidden state to observation are learned (Li & Jain, 2009). The
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Fig. 3. Observations of Hidden Markov Model. The sequence of observations for Team 1 is provided as an example. The observations of the HMM at time 𝑡 are 𝑜𝑡. 𝑜𝑡 = (𝑠𝑡 , 𝑠𝑡−1)
is a tuple of the process metrics in the current time step and in the previous time step.
observations are tuples of three collaborative process metrics: effort,
skill usage, and task strategy. These process metrics are continuous
variables. In order to ensure rapid online computation of the HMM,
we discretize the process metrics to reduce the observational space.
We compare the value of the process metric at timestep 𝑡 for a given
team to the mean of the metric across all teams at time 𝑡. The timestep
𝑡 corresponds to data collected at the corresponding interval. The
interval length was set at 30 s, in order to collect sufficient progress
on effort, strategy, and skill use in each interval. The process metric
value is converted to a binary value: 0 if the value is below the mean,
and 1 if the value is greater than or equal to the mean. That is, the
binarized effort 𝐸𝑡

𝑘 at time 𝑡 for team 𝑘 is defined as 0 if the effort
is less than the mean across teams and 1 if the effort is greater than
or equal to the mean across teams. Let 𝑀 denote the total number of
human-agent teams, the binarized effort is defined as follows:

𝐸𝑡
𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝐸𝑡
𝑘 < 1

𝑀
∑𝑀

𝑖=1 𝐸
𝑡
𝑖

1 if 𝐸𝑡
𝑘 ≥ 1

𝑀
∑𝑀

𝑖=1 𝐸
𝑡
𝑖

(4)

Binarized strategy, 𝑈 𝑡
𝑘, and skill, 𝑆𝑡

𝑘, are defined similarly.

𝑈 𝑡
𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑈 𝑡
𝑘 < 1

𝑀
∑𝑀

𝑖=1 𝑈
𝑡
𝑖

1 if 𝑈 𝑡
𝑘 ≥ 1

𝑀
∑𝑀

𝑖=1 𝑈
𝑡
𝑖

(5)

𝑆𝑡
𝑘 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑆𝑡
𝑘 < 1

𝑀
∑𝑀

𝑖=1 𝑆
𝑡
𝑖

1 if 𝑆𝑡
𝑘 ≥ 1

𝑀
∑𝑀

𝑖=1 𝑆
𝑡
𝑖

(6)

4.3. State featurization

An observation at timestep 𝑡 in a sequence is the condition of the
team’s effort, skill, and strategy at 𝑡. We lastly redefine each observation
to include information from the previous timestep. The inclusion of the
previous timestep in the HMM observation allows the HMM to reason
about how the team’s effort, skill, and strategy at timestep 𝑡 may be
influenced by its condition not only at time 𝑡−1, but also at time 𝑡−2.
Each observation at time 𝑡, 𝑜𝑡 = (𝑠𝑡, 𝑠𝑡−1) is a tuple of the process metrics
in the current time step and in the previous time step. An observation
𝑜𝑡 ∈ 𝑂 ∈ {0, 1}6 is represented as a six-length vector: [effort at time 𝑡,
skill use at time 𝑡, task strategy at time 𝑡, effort at time 𝑡 − 1, skill use
at time 𝑡−1, workload progress at time 𝑡−1] = [�̂�𝑡, �̂� 𝑡, �̂�𝑡, �̂�𝑡−1, �̂� 𝑡−1,
�̂�𝑡−1]. 𝑠𝑡 is the current-time component of observation 𝑜𝑡: 𝑠𝑡 = [�̂�𝑡, �̂� 𝑡,
�̂�𝑡]. 𝑠𝑡−1 is the previous-time component of observation 𝑜𝑡: 𝑠𝑡−1 = [�̂�𝑡−1,
�̂� 𝑡−1, �̂�𝑡−1] (Fig. 3).

4.4. Training the HMM

Our model learns the hidden state transition matrix and emis-
sion probabilities matrix through Baum–Welch (Li & Jain, 2009). The
hidden state transition probabilities represent how teams transition
between different latent collaborative states. The emission probabili-
ties inform which observed process metrics are likely given a team’s
latent state. We select the number of sequences of hidden states for
which we achieve the best-fitting model, based on the one 𝑁 which
minimizes the Akaike Information Criterion (AIC) (Akaike, 1974), a
5

measure capturing goodness-of-fit and which penalizes large numbers
of parameters.

4.5. Semantic interpretation of hidden states

Training an HMM involves using a corpus of unstructured or semi-
structured data from which the model identifies underlying temporal
processes represented in internal hidden states. Doing so does not
require any prior understanding of the semantic concepts represented
by the data; however, in developing and interpreting the model, re-
searchers can attribute meaning to the hidden states based on their
probable emissions. In this case, the internal states of the HMM rep-
resent the latent CI of the team as it progresses throughout the task.
In conceptualizing these internal states as collective intelligence, we
are attributing semantic meaning to them by interpreting them through
their probable emissions, or the observable behaviors associated with
changes in the internal state. We run the Viterbi algorithm (Forney,
1973) to identify the most likely sequence of hidden states for each
team’s observation sequence. In a hidden state sequence, each probable
hidden state underlies an observation.

Next, we group observations by the corresponding hidden state to
obtain the set of observed emissions from each hidden state. Recall
each observations are six values in length. We sum the values in each
six-length observation vector and average the sums across all observed
emissions from a given hidden state. As described above, we calculate
the observed team process metrics as a single value based on the sum
across the six inputs (effort, task strategy, and skill use at time 𝑡 and
𝑡−1); therefore, the average observation value does not permit a direct
interpretation regarding differences between skill use, task strategy,
and effort, only whether there is a higher aggregate value across the
three. This allows us to loosely understand the internal states of the
model by interpreting the CI levels associated with each internal state
based on the average value of observations. Although the internal
states may also encode other latent attributes related to collaborative
dynamics, by using the probable observations to back out the meaning
of internal states, we interpret the meaning of each state along a single
feature: CI. For online prediction, we use the state transition matrix to
predict the level of collective intelligence at the next minute for a team.

4.6. Online prediction of process metrics

Algorithm 1 Online Process Metric Prediction
Require: Set of Team Observations 𝐽 , where Team 𝑗 ∈ 𝐽
Require: HMM 𝐽 = (𝐴𝐽 , 𝐵𝐽 )
1: {𝑜1 = (𝑠11, 𝑠

0
1), ..., 𝑜𝑚 = (𝑠𝑚𝑡 , 𝑠

𝑡−1
𝑡 )} ← sequence of process metric

observations up to time 𝑚
2: for 𝑡 = 𝑚, ..., 𝑇 do
3: {𝑥1, ..., 𝑥𝑡} ← 𝑉 𝐼𝑇𝐸𝑅𝐵𝐼(𝐽 , {𝑜1, ..., 𝑜𝑡})
4: �̂�𝑡+1 ← argmax𝑥𝑖 P(𝑥𝑖|𝑥𝑡) = argmax𝑥𝑖 𝐴𝐽 (𝑥𝑖|𝑥𝑡)

5: �̂�𝑟𝑡+1 ← argmax𝑜𝑖∈𝑂
P(𝑜𝑖|�̂�𝑡+1)

∑

𝑜𝑘∈𝑂
P(𝑜𝑘|�̂�𝑡+1)

= argmax𝑜𝑖∈𝑂
𝐵𝐽 (𝑜𝑖|�̂�𝑡+1)

∑

𝑜𝑘∈𝑂
𝐵𝐽 (𝑜𝑘|�̂�𝑡+1)

6: �̂�𝑡+1 ← (�̂�𝑟𝑡+1, 𝑠
𝑡
𝑡)

7: end for

Let 𝐻𝐽 represent an HMM learned through Baum–Welch (Li &
Jain, 2009) over a set 𝐽 of team observation sequences. The learned
state transition probabilities, 𝐴 , and emission probabilities, 𝑂 , are
𝐽 𝐽
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matrices. The agent observes a given team briefly until timestep 𝑚,
athering a sequence of process metric observations up to time 𝑚:
𝑜1 = (𝑠11, 𝑠

0
1),… , 𝑜𝑚 = (𝑠𝑚𝑡 , 𝑠

𝑡−1
𝑡 )} (Line 1 of Algorithm 1). The agent’s

bjective is to predict process metrics for the given team online at each
ubsequent timestep until the end of the mission, 𝑇 . We step through
he procedure for making predictions at time 𝑡. For the sequence of
bservations up to 𝑡, we compute the maximum likelihood sequence of
idden states {𝑥1,… , 𝑥𝑡} that generate {𝑜1,… , 𝑜𝑡} (Line 3 of Algorithm
). Prediction of process metrics is made by first determining the most
ikely hidden CI state in the next timestep, �̂�𝑡+1 (Line 4 of Algorithm 1).
he probability of transitioning to CI state 𝑥𝑖 from state 𝑥𝑡 is denoted as
(𝑥𝑖|𝑥𝑡) and is derived from the state transition probability matrix, 𝐴𝐽 ,
uch that argmax𝑥𝑖 P(𝑥𝑖|𝑥𝑡) = argmax𝑥𝑖 𝐴𝐽 (𝑥𝑖|𝑥𝑡). The maximum prob-
bility observation is selected and serves as the predicted observation,

�̂�𝑡+1 (Line 5 of Algorithm 1). Recall the predicted observation is defined
o be a tuple of the process metrics from the current timestep and
revious timestep �̂�𝑡+1 = (�̂�𝑟𝑡+1, 𝑠

𝑡
𝑡). The 𝑡 + 1 component of the selected

bservation, �̂�𝑟𝑡+1, is the predicted set of process metrics for the team at
he next timestep (Line 6 of Algorithm 1).

. Results

Starting with our initial 192 trials of the human agent team, we split
he data into a training set (168 trials) and a holdout test set (24 trials)
o develop our model. First, we applied the HMM-based algorithm to
odel the progression of collective intelligence states of human agent

eams throughout the search and rescue mission. We trained a single
MM with four hidden states across the dataset of sequences of team
ollaborative process metrics. The number of hidden states represents
ow many latent conditions the model maintains, or the granularity
y which the algorithm can model collective intelligence. In order
o determine the number of hidden states in the HMM, we perform
epeated 𝐾-fold (𝐾 = 5) cross validation on models with increasing
umbers of hidden states. For a candidate number of hidden states 𝑁 ,
e compute the average likelihood over all team observation sequences

n the training set, as well as in the test set. The AIC value for each
odel is 𝐴𝐼𝐶 = 2𝑁 − 2ln(�̂�), where 𝑁 is the number of parameters

hidden states), and �̂� is the likelihood of observations averaged over
ll teams in either the training or test set. We average the AIC over all
folds and 5 different random seeds, and select the number of hidden

tates which minimizes AIC; An examination of Fig. 4 (below) indicated
hat AIC was lowest for both the training and the holdout set at 4 states.

We will refer to this model with 𝑁 = 4 hidden states as CI-HMM,
single HMM estimating CI of all teams. Through analysis of obser-

ations of behavior identified by extant research (Riedl et al., 2021) to
e strongly related to collective intelligence – collective effort, member
kill use, and team strategy – our HMM generates a learned latent
ariable we interpret as the collective intelligence of the team. Thus,
e will interchangeably refer to hidden states as collective intelligence

tates (CI-states). We index the hidden states based on the mean emis-
ion value such that lower-valued states correspond to teams exhibiting
elow-average values of effort, task strategy, and skill use, and vice
ersa.

.1. Interpretation of state and emission dynamics

The learned parameters of CI-HMM are the state transition prob-
bilities and emission probabilities. The emission probabilities matrix
epresent in the (𝑟𝑜𝑤𝑖, 𝑐𝑜𝑙𝑢𝑚𝑛𝑗 )th entry the probability of observing
bservation 𝑗 from hidden state 𝑖. Using our semantic interpretation
ethod (Section 4.5), we construct an approximate ordering of the
idden states based on the average value of observations emitted.
he observations are correlated with CI. The ordering aims to capture

oosely some relationship between hidden states based on an estimate
6

f CI represented in the latent attributes of each hidden state (Fig. 5).
We can also interpret the dynamics of collective intelligence of the
eam from one state to the next from the state transition matrix for the
I-HMM model (Fig. 6). The (𝑖, 𝑗)𝑡ℎ entries of the transition matrix in
ig. 6 refer to the probability of transitioning from state 𝑖 to state 𝑗,
here darker red indicates a higher likelihood that a team in the CI

tate indicated by the value on the 𝑥-axis in one time period will be in
he CI state corresponding to the value on the 𝑦-axis in the next time
eriod. We can see that teams exhibiting poor collective intelligence,
eing in State 1, are likely to remain in those states. However, as
eams begin to show higher collective intelligence, such as in State 2,
hey have higher probabilities of transitioning to even higher CI states,
xhibiting increased CI. State 3 is a highly transitional state, indicating
hat teams could either greatly increase (to State 4) or decrease (to State
) their demonstrated level of CI. Teams exhibiting very high values
f CI in State 4, are likely to maintain high CI in their collaboration,
epresented by a high likelihood of staying in state 4.

.2. Understanding the CI dynamics of individual teams

We apply the Viterbi algorithm (Forney, 1973), a standard dynamic
rogramming approach to calculate the maximum a posteriori probabil-
ty estimate for the most likely hidden state sequence corresponding to
sequence of observations. This allows us to infer the level of collective

ntelligence of each team at each time step in the trial. In Fig. 7, we
isualize the development of CI over time for a team drawn from the
raining set.

One way in which a model such as CI-HMM can be useful is for
apturing what the model estimates to be a team’s current CI state, but
lso what is likely to happen in the next time step. For instance, an
utonomous teammate assisting the team represented in Fig. 7 might
bserve low team CI at the start of the task and look for opportunities
o improve behavior. An agent could also look for instances of behavior
uring interval 3:00–4:00 where the team improved its CI.

.3. Evaluating predictive accuracy of CI-HMM

One way to evaluate the accuracy of our model in estimating CI at
ifferent timesteps is to evaluate how well the (latent) learned CI state
redicts the observed variables of effort, skill use, and task strategy.
lgorithm 1 proposes an online inference approach for predicting at

imestep 𝑡 a given team’s collaborative process behaviors (effort, task
trategy, skill use) for the next timestep 𝑡 + 1. The algorithm predicts
he most likely next-timestep 𝑡 + 1 observation, with the constraint
hat model’s prediction of its own prior timestep matches the current
bservation.

Based on Algorithm 1, �̂�𝑡+1 ← (�̂�𝑟𝑡+1, 𝑠
𝑡
𝑡) is the predicted next observa-

ion, and �̂�𝑟𝑡+1 is the set of three predicted process metrics (effort, skill
se, and task strategy) in the next timestep 𝑡+ 1. Let 𝑠𝑡𝑡+1 represent the
rue metrics of the observed process in the next timestep. Let 𝑠𝑡𝑡+1(𝑖)
qual the 𝑖th value in the sequence of process metrics. For example,
hen 𝑖 = 1, 𝑠𝑡𝑡+1(𝑖) = 𝑠𝑡𝑡+1(1) refers to effort: the first process metric

n the sequence. We compute L1-loss for predicted observations on a
iven team. We simulate online predictions by using data up to time
to predict the process metrics �̂�𝑟𝑡+1 at the next timestep 𝑡 + 1. Then,
e continue using data up to time 𝑡 + 1, to predict observations for
+ 2, and so on. The loss is computed from the second timestep, as
he model must receive observations in order to begin predicting next-
tep observations for a given team. For each team, we average the
oss over each timestep in order to compute the final per-team L1-loss.
1 ∈ [0, 3]. The maximum L1-loss is 3, since the accuracy of predicting
ach collaborative process metric is captured as binary variables (i.e. 1
incorrect, 0 = correct), and thus the minimum loss is 0, if the model
akes no mistakes in its prediction.

1(�̂�, 𝐬) =
1

𝑇
∑

[ 3
∑

|�̂�𝑟𝑡+1(𝑖) − 𝑠𝑡𝑡+1(𝑖)|

]

𝑇 − 1 𝑡=1 𝑖=2
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Fig. 4. We select the number of hidden states minimizing AIC. The error bars represent standard error over 5 folds and 5 different random seeds.

Fig. 5. Ordering of internal CI states for CI-HMM model. CI-state 4 emits observations of the highest sum on average. The most probable observation from CI-state 4 is a team
demonstrating above-average effort and task strategy in previous timestep 𝑡 − 1 and continuing to do the same in timestep 𝑡. CI-state 1 is ordered as the state exhibiting the
lowest CI, since it emits observations of the lowest sum on average. The most probable observation from CI-state 1 is a team demonstrating below-average effort, skill-use and
task-strategy in previous timestep 𝑡 − 1 and demonstrating below-average effort and task-strategy in timestep 𝑡.



Computers in Human Behavior 139 (2023) 107524M. Zhao et al.
Fig. 6. State Transition Matrix for CI-HMM Model. The transition matrix provides insight into the dynamics of the latent collective intelligence variable learned by the HMM.
The (𝑟𝑜𝑤𝑖 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑗 )th entries of the transition matrix refer to the probability of transitioning from state 𝑖 to state 𝑗. Very poor CI states (State 1) and very high CI states (State 4)
have high likelihood of transitioning back to themselves, indicating that teams with extreme CI are likely to maintain those levels. Teams in the intermediate states (States 2 and
3) have a higher spread in their probable transitions, and thus more uncertainty in how their CI will evolve. In the state diagram (left), we visualize the two most likely state
transitions for each hidden state.
Fig. 7. The CI-HMM algorithm infers the team’s collective intelligence level at each timestep. We visualize the progression of CI for a single team drawn from the training set.
The line graph (left) contains the maximum a posteriori probability sequence of hidden states corresponding to the sequence of observations. Based on the CI-HMM model, we see
that this team begins the mission by demonstrating mostly lower levels of CI, but transitions to higher CI levels by the end of the mission.
L1 loss for CI-HMM is calculated on the teams in the training set
and separately on teams in the holdout test set (Fig. 4). Using 𝐾 = 5
fold cross validation, we averaged the loss on training and test sets over
5 folds. We repeated the experiment over 10 random seeds, taking the
model at the random seed which minimizes average training loss over
the 𝐾 folds. The mean training loss is 0.76 with a standard deviation of
0.05 over the 5 folds. The standard deviation is taken over the average
for each random seed and fold. The mean test set loss is 0.77 with a
standard deviation of 0.07.

The CI-HMM on average makes one mistake in its prediction of the
team’s process metric observations, predicting one of effort, skill use,
or task strategy incorrectly, but the remaining two correctly, overall
supporting the utility of the model in predicting future collaborative
behavior. This evaluation of CI-HMM demonstrates the use of Hidden
Markov Models as a candidate approach to modeling collective in-
telligence, a latent factor that characterizes the quality of HATs and
8

predicts its development over time. These models are valuable for
helping agents understand the dynamics of CI, and how different levels
may relate to and transition to one another in order to predict future
HAT behavior. Using the learned latent variable dynamics, we can
make predictions about the observed collaborative process behaviors
of human-agent teams and directly evaluate the accuracy of those
predictions.

5.4. Comparison with alternative models

We also compared the HMM approach to alternative regression-
based models. These include an auto-correlational linear regression
(LR) model, and a multilayer perceptron (MLP) model.

The LR and MLP models take as input the vector of three process
metrics at the previous timestep [effort at time 𝑡, skill use at time 𝑡,
workload progress at time 𝑡] = [�̂�𝑡, �̂� 𝑡, �̂�𝑡]. The output ground truth is
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Fig. 8. The CI-HMM achieves comparable L1 loss than the linear regression (LR)
and multilayer perceptron (MLP) regression models. On the training set, CI-HMM
(𝑀 = 0.76, 𝑆𝐷 = 0.05) achieves slightly higher but similar average 𝐿1 training loss
to the LR model (𝑀 = 0.75, 𝑆𝐷 = 0.02) and the MLP model (𝑀 = 0.75, 𝑆𝐷 = 0.01). On
the test set, CI-HMM (𝑀 = 0.77, 𝑆𝐷 = 0.07) also achieves similar average 𝐿1 loss to the
LR model (𝑀 = 0.75, 𝑆𝐷 = 0.06) and the MLP model (𝑀 = 0.75, 𝑆𝐷 = 0.02).

the vector of three process metrics at the next timestep [effort at time
𝑡 + 1, skill use at time 𝑡 + 1, task strategy at time 𝑡 + 1] = [�̂�𝑡+1, �̂� 𝑡+1,
�̂�𝑡+1]. We eliminate the information from time 𝑡 − 1 from the process
metric vector in order to reduce correlations between elements in the
input to the regression models. Since the values of the process metrics
take on values in {0, 1}, we classify predicted observation values that
are less than 0.5 as 0 and values that are greater than or equal to 0.5
as 1. This allows us to make a fair comparison of 𝐿1 loss values for the
vector of process metrics at time 𝑡 + 1 predicted by each model given
information from time 𝑡 (see Fig. 8).

For each model, we ran the model using 5-fold cross validation
and compared the training and testing loss averaged over the 5-folds.
For the stochastic models, CI-HMM and MLP, we tested 10 random
seeds and took the minimum training and testing losses for each model.
The CI-HMM model performs comparably to the linear regression and
multilayer perceptron model. CI-HMM (𝑀 = 0.76, 𝑆𝐷 = 0.05) achieves
slightly higher but similar average 𝐿1 training loss to the LR model
(𝑀 = 0.75, 𝑆𝐷 = 0.02) and the MLP model (𝑀 = 0.75, 𝑆𝐷 = 0.01).
On the test set, CI-HMM (𝑀 = 0.77, 𝑆𝐷 = 0.07) also achieves similar
average 𝐿1 loss to the LR model (𝑀 = 0.75, 𝑆𝐷 = 0.06) and the MLP
model (𝑀 = 0.75, 𝑆𝐷 = 0.02). Although the predictive performance of
the CI-HMM does not outperform standard regression approaches, the
CI-HMM additionally provides a representation of an underlying latent
temporal process for the observed team process metrics, which standard
regression approaches do not. We can use the latent stochastic process
to better understand what collaborative dynamics might be underlying
the data we observe.

5.5. Model extension

In building on the initial demonstration of the concept of modeling
a team’s hidden CI state in order to predict and/or intervene to improve
future performance, there are a number of exciting possibilities for
extending the model by incorporating additional inputs. One additional
input to consider is information on team members’ emotional or affec-
tive state, which could enhance the ability of models such as the HMM
developed here to predict future CI states. For instance, two emotions
that are regularly observed in settings where individuals are asked
to perform challenging tasks, particularly when other humans and/or
technology are involved, are anxiety and anger (Walter et al., 2014)
which both have implications for team collaboration (Eadeh et al.,
2022). Therefore, enabling agents to observe when human teammates
are experiencing these affective states is likely to improve their ability
to predict future behavior.
9

In exploring this possibility, we elaborated our HMM by incorporat-
ing data based on multi-item state-based measures of anger, anxiety,
and positive emotion which participants completed immediately prior
to the first round of the search and rescue game. We then evaluated the
ability of our model to predict future states. Overall, we found incor-
porating data on affective state improved our model’s overall accuracy,
and particularly incorporating information on human teammates’ levels
of anger was most helpful in predicting future states, moreso than
measures of anxiety and positive emotion.

We offer these observations as a means of illustrating future pos-
sibilities for elaborating similar models by incorporating additional
input, not only about team member affect, but also including other
inputs such as interactional synchrony (Woolley et al., 2022), linguistic
analyses (Riedl & Woolley, 2017), vocal patterns (Tomprou et al.,
2019), facial expressions (Chikersal et al., 2017), and other observable
inputs that could be informative for predicting future team behavior.

6. Discussion

As HATs become more common in a variety of settings, there is
growing recognition that machines need to be able to interpret human
behavior and predict what teammates are likely to do in order to antici-
pate what they need and potentially make helpful interventions. In this
work, we present a novel application of HMMs as a method for agents
to learn a team’s level of collective intelligence based on observations of
sequences of team collaborative process behavior. We explore a method
of interpreting and utilizing learned transition matrices to predict the
future behavior of the team collaboration process. Our method enables
agents to engage in real-time HAT monitoring and potentially diagnose
and intervene to increase collective intelligence.

6.1. Implications for research and practice

This study represents an initial demonstration of a process for
building a model to endow AI agents with a form of artificial social
intelligence that can enable them to collaborate more effectively with
humans. While we did not incorporate any agent-based adaptation
or intervention in this study, we did observe diagnostic patterns that
would provide insight to an agent about team dynamics and what
they might expect regarding a team’s level of effort, skill use, and
task strategy, with implications for interventions they might make
to help. For example, in examining the state transition matrix, we
observed that teams in States 2 or 3 (equivalent to a moderate level
of CI) were likely to transition to a higher level. By contrast, teams
in States 1, as well as those in State 4, are much more likely to
remain in their respective states of low or high CI. Consequently, an
agent observing a team in States 2 or 3 could actively try to stimulate
higher levels of collaborative process, particularly in any areas that
seem to be noticeably weak or absent, possibly by engaging in them
itself. For instance, in a team with a low level of collective effort,
an autonomous teammate could engage disengaged members or could
provide visualizations that demonstrate the team’s level of collective
effort relative to an average team. Alternatively, more effective skill use
might be stimulated through noting strengths or resources of different
members and encouraging the team to more explicitly consider how to
put them to best use (Gupta et al., 2019).

Our findings have some important implications for research. First,
we demonstrate a method for advancing the development of artificial
social intelligence in the context of teamwork. Additional studies and
datasets could be used to further identify observable team process
behaviors that would further enhance the accuracy of the models.
Furthermore, this approach opens up a whole new set of research
questions pointing to exciting possibilities. How can agents use these
models to successfully intervene and improve team collective intelli-
gence? Extant work has begun to explore potential approaches to using

agent-based teammates to improve team collaboration (Gupta et al.,
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2019; Zhou et al., 2018), demonstrating that fewer interventions that
are less directive and more in the form of ‘‘nudges’’ seem to be most
effective. Additional research can build on extant work on the best form
of intervention (Maynard et al., 2020; Mohammed & Schillinger, 2022;
Shuffler et al., 2018) as well as timing for team intervention (Fisher,
2017; Hackman & Wageman, 2005; Woolley et al., 2008), in addition
to considering the form the input or feedback would ideally take (Eddy
et al., 2013; Glikson et al., 2019; Rowe et al., 2020).

Our findings also have important implications for practice, particu-
larly as it relates to developing AI and integrating AI agents into human
collaboration. While a growing body of work in human–computer inter-
action and related fields has considered how AI systems can be designed
to anticipate human needs and to be more explainable and transparent
in order for humans to be able to understand or anticipate what they are
doing (Commission, 2020; Holzinger, 2018), somewhat less attention
has been given to how agents can be developed in a manner that
enables them to interpret human cues and adapt their behavior. Such
an ability would require further development of cognitive models and
a machine theory of mind (Nguyen & Gonzalez, 2021; Rabinowitz
et al., 2018), in which machines are capable of picking up on subtle
and/or nonverbal cues to make inferences about what others are feeling
or thinking (Baron-Cohen et al., 2001). Agents would also need to
incorporate models, such as the one we have presented here, that
provide a basis for understanding and predicting collaborative behavior
and teamwork. Newer research is just beginning to model the way that
collective cognition is formed and supports the emergence of collective
intelligence (Gupta, 2022; Woolley et al., 2022) as well as the ways
that AI agents might contribute to or support CI (Gupta & Woolley,
2021). Work in this domain should continue to elaborate these models
to enable their incorporation into AI systems for human collaboration.

6.2. Limitations

One limitation of the development of the CI-HMM algorithm pre-
sented here relates to trade-offs we made to simplify the observation
space to enable an agent to perform learning and prediction online. The
HMM observations are derived from measurements of team effort, skill
use, and strategy. In this work, we wanted to leverage standard HMM
algorithms on a discrete observation space in order to make it tractable
for an agent using the CI-HMM algorithm to perform learning and
prediction online, as the agent observes the interactions and behavior
of team members. In order to construct an HMM with discrete observa-
tions, we needed to heuristically discretize the observed collaborative
process metrics for teams in the dataset. In doing so, we relied on
the mean values across teams in the dataset for identifying whether
a given team was high or low on each metric. However, this approach
assumes that the values in our dataset are representative; if it turns
out that our dataset is based on an unrepresentative sample where
all teams collected gave extremely poor effort on the task, our model
would lead an agent to erroneously conclude that a team with higher
effort relative to the mean was performing well when in fact it was
demonstrating low effort relative to a more globally representative
sample. Alternative methods such as discretization using norms based
on larger datasets would reduce dependence on comparisons to the
average of any particular dataset. As work in the area progresses and
more data is accumulated there will be more opportunities to improve
models by using more reliable estimates of population values.

Another limitation in the current study which can be improved
upon in future research is our use of pre-scripted agents as teammates
collaborating with our human participants. At this stage of our work,
we did not attempt to develop an agent that would adapt its behavior
in response to predicted team collective intelligence levels. However,
we see several opportunities to leverage our models to inform agent
behavior to make them more adaptive and helpful teammates in the
future. In future research, we recommend that experimenters enable
10

agents to model and predict the collaborative behavior of the team to
inform interventions aimed at increasing CI. Such interventions need
not be major; indeed, targeted ‘‘nudges’’ in which agents make minor
suggestions or use subtle primes to focus on a specific process for a team
for a short time can have significant effects. Existing work (Gupta et al.,
2019) suggests agent-based interventions that are too heavy-handed
can easily backfire, and thus we recommend that future studies begin
with small, targeted interventions that attempt to nudge teams on a
specific collaborative process dimension (Gupta & Woolley, 2021; Riedl
et al., 2021).

In addition, as with all research, it is important that we seek to repli-
cate these models and our findings in additional studies and accumulate
more data over time to enable more robust model development and
evaluation. We also recommend that researchers consider to explore
additional inputs, such as the affective variables briefly explored in our
model extension, to find other variables that would further improve
accuracy. Additional relevant variables could include characteristics
such as cognitive diversity in the team or the level of social intelligence
of the members, both of which have been shown to influence the
development of CI in extant research (Aggarwal et al., 2019; Riedl et al.,
2021). Incorporating more information about team member attributes
in addition to team collaboration behavior into the development of
group splits for training models in the future may yield additional gains
in accuracy.

7. Conclusion

We propose a method for using Hidden Markov models to represent
the hidden or internal state of collective intelligence in a team and
to predict future collaboration and performance. We model CI as a
latent variable in a Hidden Markov model using observations of the
team’s effort, use of members’ task-related skills, and the quality of
their task strategy. We illustrate that by learning the set of hidden CI
states in the team we can predict how the collective intelligence will
evolve in the future, allowing agents to be better collaborators in HATs
and possibly even make interventions to improve team performance.
We hope that this initial demonstration and the ideas we offered for
future extensions will encourage more research on ways to enable more
effective collaboration in HATs.
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