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Abstract— Robots operating in human environments must be
careful, when executing their manipulation skills, not to disturb
nearby objects. This requires robots to reason about the effect
of their manipulation choices by accounting for the support
relationships among objects in the scene. Humans do this in
part by visually assessing their surroundings and using physics
intuition for how likely it is that a particular object can be
safely manipulated (i.e., cause no disruption in the rest of the
scene). Existing work has shown that deep convolutional neural
networks can learn intuitive physics over images generated in
simulation and determine the stability of a scene in the real
world. In this paper, we extend these physics intuition models
to the task of assessing safe object extraction by conditioning
the visual images on specific objects in the scene. Our results,
in both simulation and real-world settings, show that with
our proposed method, physics intuition models can be used
to inform a robot of which objects can be safely extracted and
from which direction to extract them.

I. INTRODUCTION

Robots operating in human environments need to perform
a variety of dexterous manipulation tasks, such as procuring
utensils from a large pile, grabbing a bottle from a stacked
fridge, and fetching a book from a loaded shelf. In such
environments, there are multiple objects near the robot’s
target of manipulation, and the cost of a failed attempt
at extraction can be very high. Whether an object can be
extracted or not is often non-obvious due to the complex
support relationships between objects (Fig 1). Therefore, the
ability of a robot to assess a scene visually, reason about
which parts of the scene it can safely manipulate, and use
this assessment to optimize its interactions is an important
part of its autonomy.

Existing work in cognitive science [1], [2] has shown that
humans are capable of visually assessing physical scenes
quickly and inferring abstract properties such as stability
using an internal intuitive physics engine that performs
noisy and probabilistic simulations of a scene. More recently
researchers have used computational machine learning mod-
els such as deep neural networks to approximate physics
simulators and reason about the stability of a scene directly
from visual inputs [3]–[5]. These are what we refer to as
physics intuition models throughout the paper. These data-
driven approaches greatly alleviate the need for explicit
object modeling by using the richness of simulated pas-
sive observations to approximate the dynamics of complex
scenes. Additionally, they allow for quick and accurate
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Fig. 1. (a) Ground truth values and (b) physics intuition model predictions
for which blocks are safe to remove (green) and which are not (red),
agnostic to extraction direction. (c) Ground truth and (d) model predictions
for extraction in upward direction (depicted by white arrows).

inferences during test time which are necessary for real-
world assessment. In this work we propose to extend these
models to go beyond gaining an intuition about “Is this
scene stable?” and develop a binary judgment about “Will
the scene remain stable upon removing this object (in this
direction)?”.

While our system can predict the stability of a scene
during extraction, it is not a complete solution. Any visual
prediction will suffer uncertainty around unperceived fea-
tures such as material properties and forces acting between
objects (e.g., friction). To assess these, robots will need other
interactions such as physical touch. Furthermore, they will
need to account for their specific manipulation capabilities
during these additional assessments. Despite that, visual
assessment helps robots quickly filter out unsafe objects
to extract and carefully pick only a few potentially safe
candidates. This allows robots to make targeted choices for
either additional non-visual assessments or direct manipula-
tion. Hence, we posit that physics intuition models can make
robot manipulation safe and efficient by making robot actions
more targeted, yet safe at the same time.

Contributions: (1) We introduce a pipeline to implement
physics intuition models for non-disruptive object extraction
by adding a conditioning variable in the form of a mask
on the target object during the training. (2) We demonstrate
the effectiveness of our method in both simulation and real-
world settings on a dataset of Jenga towers and Table Clutter
configurations. (3) We analyze aggregation techniques to
combine physics intuitions over multiple views to obtain a
unified visual assessment.



II. RELATED WORK

A. Support-Order Prediction and Image Understanding

Traditionally, researchers have used explicit geometry and
kinematics-based techniques to infer support-order among
objects in the scene. [6] recreates real-world scenes in
simulation by fitting primitive objects onto 3D point clouds
computing support relationships on the obtained primitive
shape arrangements. Along similar lines, there exist other
explicit rule-based approaches for safe deconstruction of
object piles [7], [8]. These methods require objects, their
physical properties and range of support relationships to be
known beforehand. This makes them difficult to scale across
different domains without explicitly changing the underlying
hand-crafted rules and carefully chosen thresholds.

Another line of research tries to find the support relation-
ships among objects in a scene directly from images through
supervised learning or non-monotonic reasoning over hand-
crafted features of individual objects in the scene [9], [10].
[11]–[13] build physically-plausible scene representations by
modeling the world as cuboids and reasoning about the
support structure and occluded regions. As opposed to these
approaches, we directly learn features from data without
assuming any predetermined form.

B. Vision-Based Intuitive Physics

Early work by [5] uses a feed-forward visual model to
predict the stability and falling trajectories for simple block
towers from images. [3], [4] use a similar model but use it
for guiding block stacking. [3] samples candidate positions
on the surface of an object and guides the construction
of the tower by picking the candidate that leads to the
highest stability score over the “hallucinated” scene from
their learned physics intuition model. [4] do something sim-
ilar, but they hallucinate sample candidate positions on the
images themselves instead of sampling candidate positions
in simulation. This makes exploiting the physics intuition
models in the real world much more viable. However, they
perform the training as well as candidate sampling on binary-
valued foreground masks of the scene which limits the
generalizability of the method to complex real-world scenes.

Our work differs from [3], [4] in that we try to learn
physics intuition models that capture a notion of safe object
extraction instead of stacking. Similar to [4] we try to
sample candidate objects to remove by directly hallucinating
object extractions in the images. But instead of training
them on foreground masks of a scene, which would be
infeasible given the visual complexity of cluttered scenes,
we propose to add a separate conditioning variable in the
form of a single object mask alongside the RGB images
during training. Similar to [3], we use multiple views of the
scene to make predictions but perform a more comprehensive
analysis of various methods to aggregate these predictions in
a significantly more occlusion sensitive setting.

There exists a plethora of ongoing research that aims
to accurately model the physics dynamics of a scene from
framing it as a future object state [14], [15], image frame

[16], [17], or object trajectory [18], [19] problem. In our
work, we focus on static scene analysis using images with
no access to previous frames, object supervision beyond
object masks and require prediction of a high level property
(stability) of the system rather than the exact state of objects
in the system. [18] is related to our work in the sense that it
uses object masks to make predictions about the trajectory
of an object in the image space. Our work in comparison
makes predictions about the stability of the remaining scene
rather than predicting the trajectory of the object-of-interest
although using a similar object conditioning method.

III. METHODOLOGY

A. Overview

Learning physics intuition models is a supervised learning
task. By changing the traditional image class labels to
stability labels, we can learn a physics intuition model over a
large number of images of scenes. The stability labels (stable
or unstable) for these images are obtained by running actual
simulations of a scenario in a physics engine. The objective
is to learn a mapping f that, given an image I of the initial
configuration of a scene S (consisting of n objects defined
as {s1, s2. . . sn}), can provide the stability prediction P (S),
which is a probability value between 0 (unstable) and 1
(stable).

f : I(S)→ P (S) (1)

1) Target Object Conditioning: We note that in the above
formulation, the model is unable to naturally provide infer-
ences about individual objects in the scene, i.e., it is unable
to answer “What is the stability of the scene after removing
object si?”. One way to answer this question in the current
setting is to remove the corresponding object from the scene
and get the inference from the same function mapping f .

f : I(S \ si)→ P (S \ si) (2)

Computing I(S\si) at test-time is non-trivial as it requires
a robot to hallucinate the removal of an object from an image.
As a simple solution to resolve this issue and adapt these
models for object extraction tasks, we propose to generate
only stable scenes to train our physics intuition models and,
in each scene, remove a block and obtain the stability label
for the resulting configuration. The corresponding segmenta-
tion masks of object si in image I can be defined as φ(si).
These masks can be added to the above mapping function,
thereby conditioning the obtained probability value on the
object (i) to which the mask corresponds.

f : I(S|φ(si))→ P (S \ si) (3)

We can obtain the segmentation masks over target objects
from a separate object segmentation method [20] at test time
for real-world evaluation. During training, we obtain these
masks directly from the simulator.



2) Aggregation Over Multiple Views: We may obtain
different predictions for the same scenario from different
camera angles because of occlusion from objects in the scene
and the inability of a single 2D image to capture all of
relevant 3D information in the scene. For camera angle k,

f : Ik(S|φk(si))→ Pk(S \ si) (4)

Therefore, it is important to account for multiple views of
a scenario and obtain an accurate assessment of the scene
in order to generate a single prediction. A common choice
for capturing this mapping f has been deep convolutional
neural networks [3]–[5], which consist of a feature extractor
module (multiple convolution layers, CNN) followed by a
classifier module (multiple fully connected layers, FNN). We
explore two ways of performing aggregation over K views of
a scenario in the context of these deep convolutional neural
networks.

- Pre-training: As first proposed in [21], we can modify
our model architecture during training to compute
the feature representations over all available views
(regardless of their order) and use view pooling to
get an aggregated representation of the scene. This
representation can be passed onto the classifier module
to make a single prediction. See Figure 2.

f : {I0(S|φ0(si))...IK(S|φk(si))} → P (S \ si) (5)

Fig. 2. Pre-training multi-view Aggregation: A single inference y is made
on all views of the scenario. Target block is highlighted by the red box.

- Post-training: An alternative is to use a function
mapping g that combines the predictions obtained over
multiple views from the existing single view model,
trained on all the views at once, using an aggregation
method Ψ (in our case, we evaluate mean, median,
mode, maximum and minimum). See Figure 3.

g : Ψ({P0(S \ si)...Pk(S \ si)})→ P (S \ si) (6)

Fig. 3. Post-training multi-view Aggregation: Inferences for each view are
made on the scenario and are aggregated to provide a single inference y.

3) Predicting the Extraction Direction: Currently our
formulation only accounts for predicting whether a particular
object can be safely removed from the scene and does not
account for a robot’s skill, i.e., our inference function f is
skill-agnostic. In order to obtain a skill-specific model, we
must account for the robot’s skill during the generation of
the stability labels. For object extraction, we parameterize a
robot’s skill as a set of discrete extraction directions (from
the perspective of the robot). We define 5 discrete skills as
[Extract Up (UP), Extract Forward (FW), Extract Backward
(BK), Extract Left (LF), Extract Right (RT)]. For learning
the skill-specific models, we reformulate our problem from
being a logistic regression problem with a single label to one
with 5 labels.

f : {I0(S|φ0(si))...IK(S|φk(si))} →


PUP (S \ si)
PFW (S \ si)
PBK(S \ si)
PLF (S \ si)
PRT (S \ si)


(7)

For each extraction direction, we move the target object
(canceling out all forces) by 0.2 m assuming a maximum
acceleration of 0.1 m/sec2. We determine these values as
being reasonable for a robot to complete a clean and careful
extraction after securing an object.

B. Dataset Generation

Since collecting data in the real-world is an expensive
process, a common approach is to use domain knowledge
and synthesize data in simulation. Publicly available image
datasets of stable and unstable scenes [3], [5] generated in
simulation are limited to block towers as they primarily focus
on stacking tasks and do not feature some of the charac-
teristic features of a cluttered scene, such as objects being
supported by multiple objects, objects supporting each other
along the plane, etc. Therefore, to evaluate our approach in
a more principled way, we propose a taxonomy of cluttered
scenes and choose a scene type from each proposed category
to generate data and report results.

1) Taxonomy: We propose a categorization of cluttered
scenes based on two factors that we believe affect the
learning capacity of physics intuition models:

- Homogeneous Structure: An inherent homogeneous
structure aids the learning process while diverse inter-
object support-relationships in the scene make the
learning process difficult. This can be understood by
observing that in the presence of inherent pattern,
information learned from one part of the scene can
be extended to parts that exhibit a similar pattern.

- Tractability: Learning over scenarios with a large
number of individual objects requires the physics in-
tuition model to capture a larger uncertainty around
the object interactions as well as handle the increased
occlusions. This has been shown to be true in the
case of block stacking tasks [4], and we expect this
relationship to extend to object extraction tasks as well.



Fig. 4. Dataset visualization For skill-agnostic models. Top row depicts
sample scenes and the bottom row visualizes the ground truth - green
indicates blocks that can be removed and red indicates otherwise.

TABLE I
DATASET STATISTICS FOR SKILL-AGNOSTIC MODELS

Total Stable Scenarios Unstable Scenarios

Clutter 6873 5483 1390
Jenga 13053 5473 7580

Figure 4 illustrates the resulting categories and the specific
representative scene types. Table I summarizes the dataset
statistics. We do not consider the category where a cluttered
scene can be both intractable and lacking homogeneous
structure as it becomes increasingly impractical to care about
disruption of individual objects. Here one must reason about
the effect of manipulating a collection of objects instead and
we leave this for future work. In the following subsection,
we go into more detail about the selected scene types and
their corresponding data generation methods.

2) Synthetic Data Generation: To generate data corre-
sponding to each scene type, we use the V-REP simulation
platform [22]. In order to aid the network in identifying
individual objects, similar to previous work [3], [5], we
generate randomly colored objects. The dimensions of the
base plane upon which a scenario is generated is constant
across our data generation pipeline. We generate scenes using
rigid homogeneous cuboids across all of the scene types to
aid the generation of stable structures. Evaluating the method
on more complex shapes will be addressed in future work.
The specific details about the methods used to generate data
for each scene type are below.

- Tower: For each sample, we simulate a tower of 1 to
4 objects on a uniformly sampled base location on the
table. We simulate 500 towers for each height. While
the size of each block is kept constant, we uniformly
sample the orientation of the sides on which each block
will rest and the orientation around the table normal.
This scene type is an example of a configuration which
displays both tractability and inherent structure and
serves as a sanity check for our approach (we expect
only the top block to be predicted as extractable).

- Table Clutter: For each sample, we simulate a tabletop
cluttered scene with 2 to 5 objects (500 arrangements
for each). The size of the additional objects is kept con-

stant and their positions are sampled uniformly across
the table. Blocks are generated at a small distance
above the table with a normally sampled orientation.
They are allowed to fall freely in the simulator and a
sample is saved from all of the blocks that remain at
rest on the table.

- Jenga Tower: For each sample, we generate a stable
Jenga tower at the center of the table with the tower
height ranging between 5 and 8 (250 towers each). We
ensure that each row is supported by either ≥ 2 blocks
from below or by one block placed along the center.
The size of the blocks is based on the standard Jenga
block dimensions and is constant throughout the scene.

3) Obtaining Ground Truth Labels: From each scene,
we can obtain multiple scenarios based on the number of
objects in the scene (where a scenario comprises of the
sampled scene and one of the target objects). To obtain the
ground-truth label for each scenario, we run the target object
extraction in our simulator. We enable surface friction and
gravity during the simulations. For the skill-agnostic case,
we simply delete the target object from the scene. For the
skill-specific case, we remove the target object using the
5 discrete skills described in the previous section (Section
III-A.3). We then step through the simulation for a fixed
number of steps and record the position and velocities for
the remaining objects. This change is used to label a scenario
as stable or unstable according to empirically determined
threshold. To account for the class imbalance that results
from the stochastic data generation pipeline (Table I), we
perform up-sampling and ensure a equal stable-unstable ratio
in our test sample scenarios. We use 1096 and 1516 test
samples for Clutter and Jenga scenarios respectively.

Images and object masks of individual blocks from the
scene are captured from 8 uniformly spaced camera angles.
The images are rendered in color at a resolution of 224x224.
To avoid visual ambiguity in the extraction direction, we
choose camera angles that uniquely identify the table in
each view. An alternate approach would have been to choose
camera views from only one side of the table. In the next
subsection we describe our training methodology in detail.

C. Training

We chose AlexNet’s [23] feature extractor across our
experiments as it consistently gave a reasonable performance
on our dataset while requiring a limited number of param-
eters. Our classifier consists of a single 256 hidden unit
fully connected layer. We use the Multi-View Convolutional
Neural Networks (MVCNN) architecture proposed in [21]
to extend the AlexNet architecture to multi-view inputs of
the scene. Similar to [3], we optimize the standard logistic
regression loss function for the binary classification task for
the skill-agnostic models:

L = − 1

n

n∑
i=1

[yi log (pi) + (1− yi) log (1− pi)] (8)



Here n is the batch size, pi is the output of the logit
function at the end of the network for input image xi, and
yi is the ground truth label. For the skill-specific models,
we train only on a subset of scenarios that are classified
as stable by the skill-agnostic model. This is because the
scenarios that are classified as unstable by the skill-agnostic
model will always be labeled as unstable by the skill-specific
model. The loss function used for the skill-specific models
is the same as above, with the only difference being that it
comprises the multi-dimensional loss. We evaluate our model
on a validation set during training over 80 epochs with a
batch size of 32 and keep the model with the best accuracy
(skill-agnostic) or lowest Hamming loss (skill-specific). We
use the Adam optimizer [24] to train our models with a
learning rate of 0.0001.

For both skill-specific and skill-agnostic cases we train
two models: one trained over all single-view images of the
scene and the other trained over multiple views of the scene
using MVCNN. We evaluate both models on our test set
for each scene type. For skill-specific models we use a
single validation dataset combining the scenarios marked as
positive in the skill-agnostic setting across the the validation
and test set. We also use multiple aggregation techniques
on predictions obtained over multiple camera views of the
scene. For the purposes of this paper, a model that uses only
a single view of the scene to make a prediction is called
single-view and a model that uses multiple views is called
multi-view.

IV. EVALUATION

We evaluate our claim that our proposed approach can
achieve a high performance over our test set by comparing it
to chance (label every block as extractable). We also evaluate
our claim that aggregating inferences over multiple views of
a scene improves performance as compared to a single view
by comparing the multi-view models to the best performance
obtained from any single-view model on our test set. For
multi-view models, we performed both pre-training and post-
training aggregation. For pre-training aggregation, we use the
MVCNN architecture proposed in [21]. For post-training, we
evaluated five aggregation techniques: mean, median, mode,
max, and min. We consistently saw better performance with
mean aggregation and, in the interest of space, we only report
on this post-training aggregation method.

A. Metrics

Since we are dealing with a binary prediction problem, we
use the following two metrics to evaluate our approach on
different scene types and across different methods:

- Balanced Accuracy (ACC): This metric measures the
average recall obtained on each class.

- Macro Precision (PRE): This metric measures the
average precision obtained on each class.

Even though we balance our test dataset initially, the
weighted versions of accuracy and precision are used to
account for the class imbalance that emerges when curating
data for the skill-specific models.

TABLE II
SIMULATION TEST SET EVALUATION FOR SKILL-AGNOSTIC MODELS

(PERCENTAGE ACCURACY AND PRECISION)

Type
Multi-View
(MVCNN)

Multi-View
(Mean) Single-View Chance

ACC PRE ACC PRE ACC PRE ACC/PRE

Clutter 70.89 75.22 70.26 78.60 68.61 72.51 50.00
Jenga 94.79 94.79 91.16 91.83 86.21 86.52 50.00

B. Simulation Results

For both the skill-agnostic and skill-specific models, we
observe that all of the models perform perfectly on the Tower
scene type. This is expected because of the low complexity
of the scene type and served as a sanity test for our method.
For the two other scene types, our models demonstrate sig-
nificantly higher accuracy and precision compared to chance
in the skill-agnostic (Table II) and skill-specific (Table III)
settings and across both multi-view and single-view models.

Multi-view methods perform better on both metrics com-
pared to single-view methods for the skill-agnostic case but
do not yield much advantage for the skill-specific case. We
believe this is because a single view of the scene conveys
latent information about the application of particular skills
and bolsters the prediction capability of single-view models.
For example, classification on whether an occluded object
can be extracted from the left often did not require multiple
views as this judgment can be made based on whether there
are objects to its left which are not occluded.

In the skill-agnostic setup the advantage gained from
using multiple views is lower for the Clutter scenarios as
compared to Jenga. This may indicate that for a limited
number of objects, one can identify a particular camera angle
that can make accurate predictions even when the scene
lacks any homogeneous structure. But using multiple-views
is definitely advantageous in scenarios with a large number
of objects and an inherent homogeneous structure.

For the Clutter scene type, extraction in the upward direc-
tion yields particularly low performance across the models.
This is largely due to the resulting label imbalance after
pruning using the skill-agnostic model. After pruning, there
remain negligible scenarios where a block cannot be removed
in the upward direction and the model is unable to capture
this during the training phase.

Finally, we do not observe a clear winner among different
aggregation methods for multiple-views. For Jenga towers,
a correct prediction for a particular arrangement can often
be reached only from a few corresponding selected angles
(while many angles remain ambiguous), explaining why
MVCNN proves to be a marginally better choice of skill-
agnostic model. On the contrary, for Clutter scenes, a correct
prediction for a particular arrangement can be reached from
multiple camera angles (while a few remain ambiguous), and
taking the mean prediction proves to be sufficient. Selected
predictions across different scenes for both skill-specific and
skill-agnostic models are shown in Figures 5 and 6.



TABLE III
SIMULATION VALIDATION SET EVALUATION FOR SKILL-SPECIFIC MODELS (PERCENTAGE ACCURACY AND PRECISION)

Type Model Up Forward Backward Left Right Average

ACC PRE ACC PRE ACC PRE ACC PRE ACC PRE ACC PRE

Clutter
Multi-View (MVCNN) 50.00 46.68 91.18 90.42 90.86 91.60 90.77 80.85 92.52 91.90 83.26 82.29

Multi-View (Mean) 50.00 46.68 88.04 88.04 90.80 90.80 87.91 87.95 90.51 91.03 81.45 80.90
Single-View 50.00 46.68 86.33 86.33 89.66 89.51 88.26 88.44 88.36 89.61 80.52 80.11

Chance 50.00 46.68 50.00 20.75 50.00 22.82 50.00 23.65 50.00 19.29 50.00 26.64

Jenga
Multi-View (MVCNN) 99.53 99.74 85.33 85.87 86.17 88.30 89.32 90.15 86.27 88.16 89.33 90.44

Multi-View (Mean) 100.00 100.00 86.83 88.65 86.21 90.04 87.75 91.00 88.36 91.27 89.83 92.19
Single-View 100.00 100.00 87.38 87.95 87.75 89.59 88.35 89.04 89.68 90.25 90.63 91.37

Chance 50.00 17.77 50.00 20.93 50.00 19.10 50.00 20.93 50.00 20.27 50.00 19.80

Fig. 5. Visualizing predictions made by multi-view skill-agnostic models in simulation. Single-view models often misclassify objects (white circles) that
are partially occluded or where the object’s pose is not clearly identifiable. For certain blocks, merely taking the mean of the prediction across multiple
views may not be sufficient, as there may only be a few camera angles that are able to make accurate predictions.

Fig. 6. Visualizing predictions made by multi-view skill-specific models in simulation. Which objects can be safely removed depends on which skill
that we try to remove them with (white arrow). We observe that skill-specific models make few misclassifications (white circle) and are able to accurately
predict this skill-specific notion of object-extraction. Note that classifications are made on blocks that are marked extractable by the skill-agnostic models.

Fig. 7. Visualizing predictions made by skill-agnostic models on real image inputs. For each scene, images taken from two different camera views are
passed to our trained physics intuition model and the probabilistic predictions are recorded. The misclassifications are highlighted with a white circle.



TABLE IV
REAL WORLD EVALUATION FOR SKILL-AGNOSTIC MODELS

(PERCENTAGE ACCURACY AND PRECISION)

Type Multi-View (MVCNN) Multi-View (Mean)

ACC PRE ACC PRE

Clutter 67.86 68.72 57.14 76.92
Jenga 74.07 78.27 51.65 52.85

Fig. 8. Probability of extraction failure, with and without physics intuition.

C. Real World Evaluation

To test transfer of our model to the real world, we
conduct a preliminary evaluation of our multi-view skill-
agnostic models on a small dataset of real image inputs. Our
dataset consists of two images taken from different angles
for 9 configurations of Jenga and Clutter each. We render
a small dataset, similar to as explained in section III-B, in
MuJoCo [25] to obtain more realistic images and train our
model in the same manner as explained in section III-C. We
extensively perform domain randomization [26] by varying
the block color and table textures during training to make
the sim-to-real transfer tractable.

Despite the drop in performance due to the implicit sim-
to-real gap, we see that our models show promising results
on real-world images (Table IV and Figure 7). As mean
aggregation suffers due to the limited number of views
in our experiments, we use the MVCNN model for our
further analysis. We observe that our models are sensitive
to lighting conditions and sometimes mistake internal shad-
ows for blocks, leading to misclassifications in the Jenga
scenes (middle row left, 7). Common failure cases for the
Clutter scenes involve arrangements of blocks that are not
abundantly present in our training dataset, such as blocks
leaning up against each other (bottom row right, 7).

We further evaluate the average per-scene probability of
failure (selecting an unsafe block) when selecting a block
to extract using the MVCNN physics intuition model. We
compare it against the average probability of failure when
extracting any random block from a scene (chance) and
summarize the results in Fig. 8. Even with an imperfect sim-
to-real transfer, we observe that visual assessment can reduce
the chance of failure in both Jenga and Clutter scenes.

D. Analysis

In this section, we analyze the models trained in simulation
to gain further insight into their internal properties and
understand their limitations to inform future work.

1) Visualization: To inspect which properties of the scene
our models focus on when making predictions, we visualize

Fig. 9. Class activation maps for Clutter (a,b) and Jenga (c,d) scenes.
Target object is highlighted in white. Red circles in the original images
(left) highlight the region corresponding to the activation maps (right).

the learned discriminative image regions from the CNN layer
of the models. As proposed in [27], introducing a Global
Average Pooling layer between the last convolution layer
and the final fully connected layer of our model allows us to
back-project the weights from the fully-connected layer and
obtain Class Activation Maps (CAMs).

We inspect these discriminative regions in our test set for
the skill-agnostic models. Figure 9 displays visualizations
across two views of the Jenga and Clutter scenes both in the
simulated and real image settings. The regions that contribute
to the models’ predictions are proximal to the target object.
We can also see that for Jenga scenes that have a clear view
of the objects in the target object row, the network focuses on
that row, while in other scenes, it focuses on the blocks below
it. This may be because having an alternate supporting block
in the row is critical for the stability of the tower as is having
supporting blocks underneath to counter the weight. Since it
is difficult for a network to infer both these properties from a
single view alone, multi-view models may have an edge over
single view models. In the table Clutter scenario, we see that
the network focuses at the contact region of the target object
and all the object that it is supporting or being supported by.
This may be because having contact with another block and
the arrangement of nearby non-target objects are important
factors that determine a scene’s stability.

2) Generalizability: We evaluate the performance of skill-
agnostic multi-view (MVCNN) models when trained on
scenes consisting of different numbers of blocks than the
testing scenes. Furthermore, we evaluate the sensitivity of our
model by introducing small random noise in block sizes in
the Clutter scenes and the absolute position of blocks in the
Jenga scenes. Results from this experiment are summarized
in Table V. We observe that models trained on a larger
number of blocks extend well to scenes with fewer blocks
but not vice versa. Additionally, training on noisy scenes
captures a better generalizable physics intuition that extends
well to samples with a more homogeneous structure.



TABLE V
GENERALIZABILITY BETWEEN SCENES (ACCURACY AND PRECISION)

Scene Training Testing ACC PRE

Num. Blocks Num. Blocks
Clutter 2, 3 4 83.03 77.14
Clutter 2, 4 3 86.82 77.11
Clutter 3, 4 2 91.80 79.09

Tower Height Tower Height
Jenga 5, 6 7 85.19 80.05
Jenga 5, 7 6 86.81 94.07
Jenga 6, 7 5 91.40 93.06

Noise Noise
Jenga Yes No 98.82 98.82
Jenga No Yes 92.10 93.18

Clutter Yes No 89.35 89.59
Clutter No Yes 77.29 82.83

V. CONCLUSION

Existing research has shown that robots can use vision-
based physics intuition models to predict a scene’s stability
directly from images and exploit this reasoning to create
stable stacks of objects. Here, we demonstrated how robots
could use similar visual assessment to perform the inverse
process of predicting which objects can be extracted safely
from a configuration and in which direction, hence, effec-
tively reducing the probability of a robot disrupting the scene.

We extended existing physics intuition training methods
by conditioning the images on specific objects using an
object mask alongside the image of the scene. We showed
that aggregating multiple views can increase the model’s
performance for assessing both, structured and unstructured
object arrangements. Future work will explore how a robot
can actively select multiple views by explicitly accounting
for the prediction uncertainty in the available views.

In analyzing the discriminative image regions found by
the model, we observed that discriminative regions correlated
with regions that were critical to the stability of the scene,
such as objects being directly supported by the target object
or regions where alternate support must be present in order to
avoid disruption. This analysis suggests that the system has
learned meaningful intuitive physics features of the scenes.
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